

Two section air-water heat pump for heating, cooling and **DHW** production

SPHERA EVO 2.0 - Tower SQKN-YEE 1 TC + MiSAN-YEE 1 S 2.1 ÷ 8.1 RANGE

ECHNICAL BULLE

SIZE	2.1	3.1	4.1	5.1	6.1	7.1	8.1
HEATING CAPACITY KW	4,32	6,18	8,30	10,9	12,13	14,51	16,01
COOLING CAPACITY KW	4,55	6,44	8,10	10,00	12,06	13,79	14,84

DHW STORAGE
190 L - A
250 L - A -B

Page

3	Features	and	benefits

- 4 Standard unit technical specifications
- 6 Built-in options
- 7 Accessories separately supplied
- 15 Hybrid version
- 17 General technical data
- 32 Refrigerant pipe connection
- 33 Water connections
- 34 Electrical connections
- 35 Auxiliary heat sources and hybrid versions
- 39 System connections
- 44 Data for the UNI/TS 11300 calculation
- 48 Energy requalification
- 49 EuroSwitch Function
- 50 Management of units in cascade
- 51 Dimensional drawings

Clivet is taking part in the EUROVENT certification programme up to 1.500 kW. The products concerned appear in the certified products list of the EUROVENT www.eurovent-certification. com site.

Features and benefits

SPHERA EVO 2.0 is a specialised autonomous heat pump system for single- and multi-family homes with medium/low and high power consumption.

Is an air-water heat pump system for cooling and producing/storing domestic hot water.

The SPHERA EVO 2.0 system is composed of a latest generation high efficiency outdoors moto-condensing unit connected via refrigerant connections to an indoors unit.

It is the second generation of heat pumps for residential use.

SPHERA EVO 2.0 Tower

- Tower Version
- Two volumes of DHW 190 and 250-litres
- Class A++ Average temperature
- Class A+ Domestic hot water production
- Built-in WiFi for connection to the dedicated APP
- Also available in the hybrid version with 24 kW or 34 kW gas boiler

SPHERA EVO 2.0 Box

- Box Version
- Integrated 3-way valve for DHW
- Compact dimensions
- Class A+++ Low temperature
- Built-in WiFi for connection to the dedicated APP
- Also available in the hybrid version with 24 kW or 34 kW gas boiler

SPHERA EVO 2.0 Invisible

- Version for built-in installation
- 50-litre DHW storage can be expanded up to 300-litres
- Compact dimensions for easy installation in walls
- Also available in the hybrid version with 24 kW gas boiler
- · Built-in WiFi for connection to the dedicated APP

SPHERA EVO 2.0 - Tower - Indoor unit

Zinc-Magnesium frame

Supporting frame in Zinc-Magnesium panelling, excellent mechanical characteristics and high resistance to corrosion over time.

Panelling

External panelling in zinc-magnesium sheet, with white paint in RAL 9003 to ensure better resistance to corrosion. Panels that can be easily removed to allow full access to internal components.

Internal exchanger

Direct expansion heat exchanger with INOX AISI 316 stainless steel braze-welded plates. With low refrigerant content and high exchange surface, complete with external anti-condensation thermal insulation 10 mm thick in sintered expanded polypropylene.

Domestic hot water

- 190-litre or 250-litre DHW storage tank with vitrified internal surface and external polyurethane insulation (50mm thick)
- Magnesium anode
- 2 kW safety and anti-legionella heating element
- Internal exchanger in vitrified steel with an exchange surface of 2 m²
- · Set-up for domestic hot water recirculation circuit
- · Storage discharge stop valve
- Probe sump for solar thermal system control

Hydronics module

- · Variable flow direct current primary circulator
- · Safety flow switch for water flow
- 3-way switching valve for system or domestic hot water
- 3 bar system water side pressure relief valve
- Magnetic dirt separator
- System vent valve
- 8 litre system expansion tank, 1 bar pre-charge
- · Drain pan in ABS

Electrical panel

The electrical panel is located inside the unit and is easily accessible thanks to removable panel. Moreover, a LED on the front panel is connected to check the operating status of the unit.

The capacity section includes:

· power input terminals.

The control section includes:

- remote microprocessor control with single-area thermostat function;
- BMS management;
- daily, weekly temperature set point and start-up/shutdown scheduler.
- anti-legionella function scheduling;
- management busters two zones;
- · solar thermal management;
- management for auxiliary heaters;
- · antifreeze protection water side;
- · no water flow-rate protection with flow switch;
- · remote interface terminal with graphic display;
- · cascade operation.
- Inside the electrical panel there is a T1B temperature probe for low temperature area control in the 2-area kit (length 4.5 m and 6 mm bulb).

Standard unit kit:

- Mesh filter for system water
- Copper gas reduction for 4-6 kW outdoor unit connection
- Fittings for unit connection
- Ball shut-off valve for system isolation
- Torx key and insert for opening and closing the unit's panels
- · Adjustable feet that can be screwed on the base of the unit
- · Cover cap for remotely controlled keypad

Standard unit technical specifications

SPHERA EVO 2.0 - Outdoor unit

Zinc-Magnesium frame

High strength frame for outstanding durability and excellent mechanical characteristics.

Panelling

Outer panelling made of Zinc-Magnesium sheet metal painted with pantone warm gray 2C to ensure superior corrosion resistance. Each panel can be easily removed to allow full access to internal components.

Rotary DC inverter compressor

Inverter controlled rotary hermetic compressor for constant modulation of the power supplied according to actual needs, ensuring high seasonal efficiency. With a motor protection device for overheating, overcurrents and excessive temperatures of the supply gas. It is installed on anti-vibration mounts and it is equipped with oil charge. The compressor is wrapped by a sound-absorbing hood, that reduces its sound emissions. A guard heater with automatic insertion prevents the refrigerant from diluting the oil when the compressor stops.

EC inverter fan

Axial fan with variable speed control and sickle shaped blades in ABS resin. It is directly coupled to the electronically controlled motor (IP23), which, thanks to brushless technology and the particular power supply, increases its lifespan and reduces consumption. The fan is housed in an aerodynamically shaped nozzle to increase efficiency and minimise noise. It is also fitted with anti-intrusion grid.

External exchanger

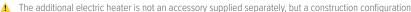
Direct expansion finned coil exchanger made with copper pipes mechanically expanded to better adhere to the fin collar. It has a large surface area to improve heat exchange and reduce defrosting in the interest of seasonal efficiency. The fins are made of aluminium with hydrophilic treatment which facilitates the elimination of condensate, further improving defrosting.

Refrigerant circuit

The refrigeration circuit includes:

- Electronic expansion valve
- 4-way cycle inversion valve
- Liquid separator in extraction
- Mechanical filters
- Low pressure pressure switch
- High pressure pressure switch

EH024 EH3


EH6

EH9

Integration electric heater

The electric heater can operate both for the system and for the production of domestic hot water in two different modes:

- as an integration, when the heat pump capacity is not enough to fulfil the required set point;
- as a safety element if the heat pump fails.

outdoor unit remains with single phase power supply.

⚠ The configuration with additional electrical resistance excludes the external boiler connection kit and the hybrid solution.

KIRE2HX -**KIRE2HLX**

2 zones: external kit, both at high temperature

2 zones: external kit, high temperature + low temperature (mixed)

Distribution module for 2-zone heating systems with compact design (402mm x 250mm x h525mm) and ample versatility for different types of installation.

Kit composed of:

- 1 collector / Black painted separator;
- 2 circulator;
- 1 sliding temperature mixing valve (only for the kit KIRE2HL);
- 1 EPP insulation (front and rear);
- 1 threaded disc with hermetic sealing cap;
- 1 lower anti-rotation jig;
- 1 support bracket module,
- 1 sonda per la gestione della temperatura del circuito miscelato

For the technical data of the hydraulic head of the pumps, please refer to the dedicated section in the HYDRAULIC DATA chapter.

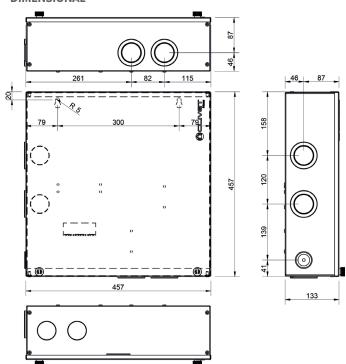
Secondary circuit kit (1-litre circuit breaker + pump) **KCSX**

The single-zone kit consists of a DIX hydraulic separator combined with a high efficiency pump, all inside a box for easy installation. Allows interaction between the primary circuit circulator and the secondary circuit circulator. Furthermore, the separator also has the function of a deaerator. With the following benefits and advantages:

- makes the connected hydraulic circuits independent;
- ensures effective operation of the secondary circulator that provides the hydraulic demand of air conditioning systems
- air extraction system;
- thermally insulated black EPP
- zone manifold connection kit

The kit is comprised of:

- 11-litre circuit breaker;
- 2 copper pipes;
- 1 circulator;
- closing plates


Dimensions:

Length 457 mm

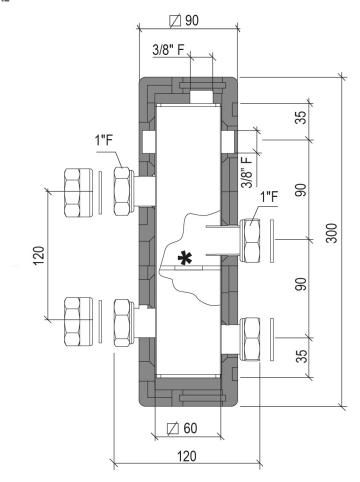
Height 457 mm Depth 133 mm

DIMENSIONAL

DIX 1-litre circuit braker

The CP60 hydraulic separator is a compensation chamber designed to make connected hydraulic circuits independent. It is used when the circulator of the primary circuit interacts with one or more parts of the secondary circuit in the same system. Furthermore, the separator performs the function of a deaerator.

With the following benefits and advantages:


- makes the connected hydraulic circuits independent;
- ensures effective operation of the secondary circulators that provide the hydraulic demand of air conditioning systems
- air extraction system;
- thermally insulated black EPP
- zone manifold connection kit

Technical data:
Nominal diameter DN 20
Connection 1" F
Max overall dimensions 120 x 420 x 945
Max temperature 110°C
Max pressure 6 bar
Circuit breaker material S235 steel
Insulation material EPP (40 g/l)
Insulation thickness 20 mm

The kit is supplied with a plate for wall mounting

DIMENSIONAL

DI50X 50-litre circuit breaker

Technical 50-litre storage tank with the function of a hydraulic separator and inertial tank ensures effective operation of the secondary circulators that provide the hydraulic demand of air conditioning systems. With the possibility of connecting two zones.

Technical data:

Circuit breaker diameter 380 mm Circuit breaker height 933 mm

Connections 1"1/4 F

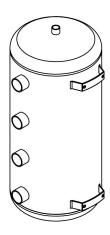
Max temperature 95°C

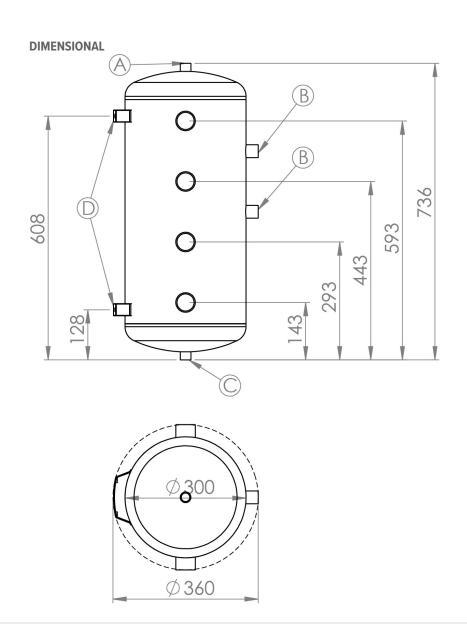
Max pressure 6 bar

Circuit breaker material S235JR steel

Circuit breaker capacity 57 litres

Circuit breaker weight 25 kg


Insulation material Polyurethane foam


Insulation thickness 40 mm

Energy class B

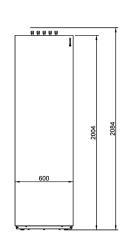
Specific heat loss 0.76 W/K

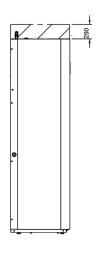
The kit is supplied with brackets for wall mounting.

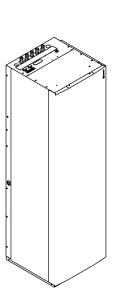
11111

ACSA250X

250L additional domestic hot water storage tank


Additional storage tank to increase the available amount of domestic hot water. IThe kit includes:


- 250-litre DHW storage tank in vitrified steel with external polyurethane insulation (50mm thick) and magnesium anode;
- circulation pump, ensures both storage tanks are at the same temperature;
- 16-litre DHW side expansion tank, 1.5 bar pre-charge;
- DHW side pressure relief valve set at 6 bar;
- anti-scalding thermostatic valve;
- set-up for DHW recirculation (recirculation pump not included);
- · drain pan;
- temperature probe for additional storage tank;
- storage tank drain valve.

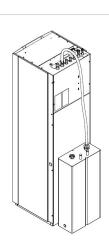

For the technical characteristics of the storage tank, use those of the standard 250L storage tank

ACI40X 40L system inertial storage tank

Inertial storage tank to be installed outside the unit. Extremely compact, supplied with air vents and support brackets for wall installation. Suitable for all SPHERA EVO 2.0 sizes, it facilitates operation and helps to fulfil the heat requirement, guaranteeing optimal modulation.

It can be installed next to or behind the unit, as shown in the figure.

Kit consisting of:


- 140-litre ST37.1 steel storage tank for ACI40X
- 12-metre flexible hose
- Extremely compact:

LENGTH: 440 mm

DEPTH: 220 mm

HEIGHT: 887 mm

- Maximum working temperature: 100°C
- Maximum operating pressure: 6 bar
- Thermally-isolated with EPP 40 g/l
- Insulation thickness 30 mm
- Automatic air vent

ANEDX Electronic anode to protect DHW boiler

Electronic impressed current anode (supplied separately) to protect the internal surface of the DHW tank. The kit contains:

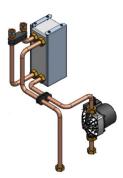
- Electronic anode (15cm);
- Electric module + power supply (220-240V ~50Hz)
- Instruction manual

The device maintains its performance and reliability over time.

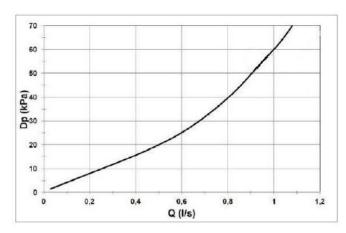
The power supply is separate from that of the unit and does not require any routine maintenance.

COFX Casing sheets for the inertial storage cover

Decorative metal sheets serving as a cover for the inertial storage tank, if installed at the back of the unit.


Drain-back solar integration for domestic hot water **SOLX**

The kit, which can be installed inside the unit, consists of:


- 1 Brazed plate heat exchanger in stainless steel (AISI 316) for domestic hot water production
- 1 Circulator
- 1 Exchanger support
- Copper connection pipes
- 2 plastic supports

Through the circulator, the domestic hot water is taken directly from the tank and heated, through the stainless steel plate exchanger with a heat exchange capacity of 2703 W/K, with the hot water coming from the solar collectors.

In this case, for operation, it is necessary to connect a solar circulation group, which can be installed outside the unit. For sizing of the solar collector system and of the components, see the ELFOSun technical documentation. For correct operation, the temperature probe of the solar panel regulation control unit must be positioned in the specific well of the SPHERA EVO 2.0 storage tank.

Solar heat exchanger pressure drop

The solar integration for DHW excludes the external boiler connection kit.

KCCEX External boiler connection kit

Kit offering the option to connect the water circuit to an external boiler.

The latter, to be provided by the customer, must have a clean ON/OFF contact.

The internal logics of SPHERA EVO 2.0 permit use of the boiler both together with or instead of the heat pump for greater comfort even at the coldest temperatures.

Kit composed of:

- 1 three-way valve with microswitch for ON/OFF activation of the boiler;
- copper pipes for connection;
- plastic seals;
- terminals and cables for electrical connections;
- kit installation manual.
- ⚠ The external boiler connection kit excludes configuration with additional electric heater.
- ⚠ Check that the boiler pressure drops are compatible with the head of the unit.
- Not required for SPHERA EVO 2.0 Tower Hybrid version

KCCE4X Kit collegamento caldaia esterna 4 tubi

Kit offering the option of connecting the water circuit to an external boiler. Ideal for boilers with circulator and instant production in heating and DHW mode.

The boiler must have a dry ON/OFF contact or 0-10V input.

The internal logics of SPHERA EVO 2.0 permit use of the boiler both together with or instead of the heat pump for greater comfort even at the coldest temperatures.

The kit consists of:

- copper pipe for connection;
- plastic gaskets;
- kit installation manual.
- 1 The kit excludes the configuration with an additional electric heater, the solar integration kit.

HID-TCXB HID-TCXN

Black soft touch chronothermostat, with temperature control and management via App / Voice control White soft touch chronothermostat, with temperature control and management via App / Voice control

For semi-uncased installation

Main functions available from the thermostat:

- ON/OFF
- keypad lock
- set-point control and limitation
- room temperature display
- setting change (manual / scheduled)
- antifreeze function (prevents temperatures that are too low)

Additional functions available on the Clivet Home Connect App

- · weekly schedule
- boost (forced system switch-on)
- temperature and consumptions log

Technical specifications:

- display: colour soft-touch
- combinable SwitchConnect receivers: max 2
- installation: semi-uncased
- power supply: 100÷253V / 50÷60Hz
- settable temperature: 5÷40°C
- antifreeze temperature: 2÷25°C
- temperature offset: ±5°C (std 0°C)
- protection rating: IP30
- Wi-Fi: 802.11 b/g/n
- self-adjusting clock via web with back-up battery
- dimensions: 122x82x15mm

SWCX SwitchConnect radio receiver

Radio receiver for HID-TConnect, for managing the request of terminal units or radiant systems, the heat pump mode change or the double set-point.

Technical specifications:

- functions: radio receiver for use with HID-TConnect
- combinable thermostats: max 6
- frequency: 2.4GHz
- transmission distance: max 30m (in buildings) / max 100m (in open range)
- contacts: 2 relays (voltage-free)
- power supply: 95÷290V / 47÷440Hz
- operation temperature: 0÷40°C
- operation humidity: 20÷80% RH
- dimensions: 125x78x30.5mm

T1BX T1B30X

DHW temperature probe and additional heating source at 10 m DHW temperature probe and additional heating source at 30 m

NTC water temperature probe with 10 m or 30 m cable.

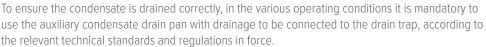
The probe can be used to detect temperatures:

Tsolar: solar thermal circuit

T1: boiler or external electric heater

T5: DHW tank Tw2: mixed zone 2

Tbt1/Tbt2: hydraulic separator


The unit is equipped with a T1BX probe as standard.

DTX Auxiliary drain pan

Outdoor unit

The base plate of the outdoor unit is fitted with a drain for the condensate produced during the winter phase in the defrosting period. This can help (not guarantee) condensate flow correctly into the relevant drains

An anti-freeze heater is also included in the drain pan. It prevents the condensate produced from freezing when the outdoor temperature drops below zero.

APAVX Kit of antivibration mounts for floor installation

The antivibration mounts for floor installation reduce the vibrations of the compressor during its operation. They are secured to the feet of the base plate.

ASTFX Kit of antivibration mounts for wall bracket installation

The antivibration mounts reduce the vibrations of the compressor during its operation. They are secured to the wall support brackets

KSIPX Kit with wall fixing brackets

Wall fixing bracket for outdoor unit, adjustable, in galvanised steel painted with polyester powders for outdoor use..

VDACSX Thermostatic switching valve for DHW

The thermostatic switching valve is used in the DHW circuit.

It is designed to divert the water from the DHW storage tank directly to the utility as the water temperature is suitable for use. If the temperature is not adequate for direct use, the switching valve ensures the water passes inside the boiler which, thanks to instant production, guarantees continuous supply.

11/4 "M connections.

Body in anti-dezincification alloy. Chromium-plated.

PSU shutter.

Stainless steel springs.

EPDM sealing elements.

Maximum inlet temperature 100°C.

Adjustment range: 38÷52°C

Accuracy: ± 2°C

Max (static) working pressure: 10 bar Max (dynamic) working pressure: 5 bar

Default calibration: 40°C

Minimum range for steady operation: 4 l/min

⚠ Reductions for connections of different diameters are the responsibility of the client

Hybrid version

Boiler to be combined with hybrid heat pump to form a system that can work together with the boiler, as a back-up for the heat pump. The logic of the heat pump controls all the boilers with an ON/OFF signal to ensure optimal operation of the system. The boilers can be used as standard with natural gas or LPG, depending on the type of supply available in the field.

The kit includes a condensing boiler and a 10-metre long temperature probe (T1) to be connected in the field.

1 The hybrid version excludes the possibility of selecting electric heaters in the system

Stand-alone systems

GAS BOILER_UC / GAS BOILER_FE 24.4-33.4 - 4-pipe condensing boiler for hybrid heat pumps

The boiler can produce DHW instantly, allowing the heat pump to work in heating or cooling mode at the same time.

For the FE version, the setpoint via 0-10V signal is controlled by the heat pump. Flue gas intake/discharge fittings can be connected to all versions of the boiler and are to be selected according to the required installation.

Note: to work with LPG, the UC versions require a reducer (supplied as standard with the boiler) which is to be fitted on the nozzle in the field

Flue accessories for boilers

KCSAFX Vertical coaxial fitting ø 60/100mm

Vertical coaxial flanged polypropylene fitting, measuring 60/100mm in diameter, for the discharge of gas and intake of air for combustion via two coaxial ducts

CCOAX 90° coaxial elbow for ø 60/100 mm horizontal outlet that can be adjusted at 360°

Elbow for the discharge of gas and intake of air, that can be combined with Ø 60/100 coaxial pipe with termi-

The internal section is used for the discharge of the combustion gas while the external section is used for the intake of combustion air.

TCOAX Coaxial pipe L = 1000mm ø 60/100 with terminal

Pipe for flue gas discharge and air intake through an external wall, with discharge terminal The internal section is used for the discharge of the combustion gas while the external section is used for the intake of combustion air.

KAS80X ø 80 mm vertical fittings

Two vertical flanged polypropylene fittings, 80 mm diameter, with inspection ports, which allow the combustion gas discharge and air intake to be split directly from the boiler body

Only compatible with GAS BOILER UC 24.4-33.4

KSDFX

ø 80mm flue gas splitter kit

Polypropylene kit to split the air intake and the flue gas discharge into two 80 mm connections with inspection ports to connect to vertical or bent pipes

Compatible only with FE 24,4 and FE 33,4 boilers

Centralized systems

GAS BOILER_UC 70.2-115.2-200F.2 - 2-pipe condensing boiler for hybrid heat pumps

All the versions use the 0-10V signal of the heat pump to control the set-point, and version 200F.2 also uses Modbus communication.

The 70.2 and 115.2 versions are for wall installation, while the 200F.2 is for installation on a base.

INAILX INAIL safety kit for installation of single boiler

INAIL-approved 1/2" safety hydraulic kit including pressure gauge, pressure gauge holder, 2 inspection wells, 100 °C lockout thermostat, thermometer, safety pressure switch.

FH100X

ø 100 mm vertical flue gas terminal

Discharge terminal for boilers for outdoor installation, with weather protection

HIDUCX

Remote control for UC 70.2-115.2 boilers

Remote control to manage Heating/ACS parameters and display the operating parameters and alarms.

It also permits communication via Modbus

⚠ Only compatible with GAS BOILER UC 70.2-115.2

General technical data

Prestazioni

SIZE			2.1	3.1	4.1	5.1	6.1*	7.1*	8.1*
STORAGE TANK CAPACITY			190 L 250 L	190 L 250 L	190 L 250 L	190 L 250 L	250 L	250 L	250 L
Heating									
Air 7°C - Water 35°C									
Nominal heating capacity / Max	1	kW	4,32 / 6,26	6,18 / 7,41	8,30 / 9,11	10,09 / 10,3	12,13 / 14,60	14,51 / 15,5	16,01 / 16,80
Total power input	1	kW	0,80	1,19	1,56	2,01	2,42	3,09	3,52
СОР	1	-	5,42	5,21	5,31	5,01	5,00	4,70	4,55
Water flow-rate	1	I/s	0,21	0,30	0,41	0,49	0,57	0,67	0,75
Nominal available pressure	1	kPa	31,2	36,5	33,1	31,0	25,7	31,7	22,6
Maximum available pressure	1	kPa	69 95	62 90	47 83	31 76	70	55	39
Air -7°C - Water 35°C							-		
Nominal heating capacity / Max	2	kW	4,17 / 6,25	6,05 / 6,97	7,33 / 8,35	8,20 / 9,30	10,49 / 13,85	12,23 / 14,09	13,43 / 14,33
Total power input	2	kW	1,32	2,01	2,27	2,67	3,36	4,33	4,90
COP	2	-	3,16	3,00	3,23	3,07	3,13	2,82	2,74
Water flow-rate	2	I/s	0,22	0,29	0,34	0,40	0,56	0,62	0,70
Nominal available pressure	2	kPa	35,0	39,8	34,0	31,7	65,8	63,1	47,7
Maximum available pressure	2	kPa	69 94	64 91	58 88	49 84	71	63	49
Air 7°C - Water 45°C									
Nominal heating capacity / Max	3	kW	4,16 / 5,96	6,03 / 7,13	8,22 / 8,98	10,01 / 10,30	12,30 / 14,50	14,00 / 15,70	16,01 / 16,60
Total power input	3	kW	1,06	1,57	2,08	2,59	3,24	3,84	4,45
СОР	3	-	3,93	3,83	3,95	3,86	3,80	3,65	3,60
Water flow-rate	3	I/s	0,19	0,30	0,39	0,49	0,60	0,67	0,76
Nominal available pressure	3	kPa	32,3	36,4	34,9	31,0	51,6	41,8	21,7
Maximum available pressure	3	kPa	70 95	63 90	51 85	31 76	65	55	38
Air 7°C - Water 55°C						_			
Nominal heating capacity / Max	4	kW	4,08 / 5,74	5,94 / 6,90	7,50 / 7,80	9,60 / 9,72	12,07 / 13,90	13,85 / 14,50	16,00 / 16,20
Total power input	4	kW	1,36	1,93	2,35	3,10	3,89	4,53	5,52
СОР	4	-	3,00	3,07	3,19	3,10	3,10	3,05	2,90
Water flow-rate	4	I/s	0,12	0,18	0,23	0,29	0,36	0,41	0,48
Nominal available pressure	4	kPa	35,6	33,4	31,2	33,6	14,1	16,5	17,4
Maximum available pressure	4	kPa	70 98	70 96	69 94	63 91	90	105	80
Cooling									
Air 35°C - Water 18°C									
Nominal cooling capacity / max	5	kW	4,55 / 6,88	6,44 / 7,65	8,10 / 11,13	10,00 / 12,03	12,06 / 15,02	13,79 / 15,30	14,84 / 16,38
Total power input	5	kW	0,75	1,23	1,58	2,10	3,00	3,73	4,07
EER	5	-	6,08	5,24	5,12	4,77	4,02	3,70	3,65
Water flow-rate	_ 5	I/s	0,22	0,32	0,38	0,48	0,60	0,63	0,71
Nominal available pressure	5	kPa	34,9	34,8	34,6	10,6	13,1	16,3	15,1
Maximum available pressure	5	kPa	69 94	61 89	51 85	32 76	65	61	48
Air 35°C - Water 7°C									
Nominal cooling capacity / max	6	kW	4,26 / 6,14	6,25 / 6,39	7,46 / 7,94	9,10 / 9,10	11,80 / 11,80	12,86 / 12,86	14,2 / 14,2
Total power input	6	kW	1,22	2,02	2,24	2,94	4,29	5,04	5,80
EER	6	-	3,50	3,09	3,33	3,09	2,75	2,55	2,45
Water flow-rate	6	I/s	0,20	0,29	0,36	0,43	0,54	0,59	0,64
Nominal available pressure	6	kPa	5,8	36,1	34,3	36,8	18,1	20,3	25,1
Maximum available pressure	6	kPa	70 95	64 91	56 87	43 82	74	67	60

- User side entering/leaving water temperature 30/35 °C, source side air 7°C (U.R. = 85% Heat power data, Total power input and COP in accordance with EN 14511:2018.
- User side entering/leaving water temperature 30/35 °C, source side air -7°C Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 40/45 °C, source side air 7°C (U.R. = 85% Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 47/55 °C, source side air 7°C U.R. = 85% Heat power data, Total power input and COP in accordance with EN 14511:2018.
- User side entering/leaving water temperature 18/23 °C, source side air 35°C Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 7/12 °C, source side air 35°C Heat power data, Total power input and COP in accordance with EN 14511:2018.

The product is conforming with the European ErP Directives, which includes Commission Delegated Regulation (EU) N. 811/2018 and Commission Delegated Regulation N. 813/2013, Clima Average, High Temperature 47/55°C.

All data calculated with zero elevation gain and equivalent length of 7m.

SIZE			2	2.1	3	3.1	4	l.1	5.1		6.1*	7.1*	8.1*
STORAGE TANK CAPACITY			190 L	250 L	190 L	250 L	190 L	250 L	190 L	250 L	250 L	250 L	250 L
ERP													
Clima Average High tempera	ture Heat	pumps											
Nominal power	7	kW		4		6		7		9	12	13	13
SCOP	7	-	3.	32	3	.54	3.	.72	3	.73	3.56	3.52	3.48
Generator energy class	7	-	A	++	Δ	++	А	++	Д++		Д++	A++	A++
ης	7	%	13	130		38	1	46	1	46	139	138	136
System energy class	7	-	A	A++		++	А	++		\++	A++	A++	A++
ης	7	%	13	35	1	43	1	51	1	l51	144	143	141
Clima Average Low temperat	ure Heat p	umps											
Nominal power	8	kW		 5		6		8		10	12	14	16
SCOP	8	-	5	,13	5	5,15		5.32		.27	5.00	4.91	4.89
Generator energy class	8	-	Δ+	-++	A+++		A+++		A-	+++	A+++	A+++	A+++
ης	8	%	2	02	203		210		2	108	196	193	193
System energy class	8	-	A+	-++	A	+++	A+++		<u>A+++</u>		A+++	A+++	A+++
ης	8	%	2	07	2	08	2	15	2	213	201	198	198
Average climatic conditions -	Heat pum	p for ap	plicatio	n with	Fan co	iI							
Nominal power	9	kW		4		6		7		9	12	13	14
SEER	9	-	5,	09	5	,42	5.	.95	6	.01	5.16	5.10	4.87
Generator energy class	9	_	A+	-++	Α-	+++	A-	+++	A	+++	A+++	A+++	A+++
ης	9	%	2	01	2	214	2	35	2	238	203	201	192
Heat pump for Domestic Hot	Water app	lication											
Load profile declared	10	_	L	XL	L	XL	L	XL	L	XL	XL	XL	XL
ηwh	10	%	120	123	120	123	116	125	116	125	124	124	124
Sanitary water energy class	10	-	Α+	Α+	Д+	Д+	Α+	Α+	Д+	Α+	Α+	A+	Α+

^{7.} The product is conforming with the European ErP Directives, which includes Commission Delegated Regulation (EU) N. 811/2018 and Commission Delegated Regulation N. 813/2013. Clima Average, Medium temperature 47/55°C

All data calculated with zero elevation gain and equivalent length of 7m..

Construction - Outdoor unit

SIZE			2.1	3.1	4.1	5.1	6.1	7.1	8.1
Characteristics									
Compressor						Twin Rotary			
Refrigerant						R32			
Refrigerant charge		kg	1.50	1.50	1.65	1.65	1.84	1.84	1.84
GWP		t co2	675	675	675	675	675	675	675
Equivalent tons of CO2 (*)		t,	1.02	1.02	1.11	1,11	1.24	1.24	1.24
Oil charge		-	0,46	0,46	0,46	0,46	1,10	1,10	1,10
Type of fan						Axial			
Nominal air flow rate		m³/h	2770	2770	4030	4030	4060	4060	4060
Outdoors unit sound pressure at 1 metre	_1_	dB(A)	42	44	45	47	50	51	53
Sound power	_1_	dB(A)	55	57	58	60	63	64	66
Dimensions									
Operation (L x P x A)		mm	986x426x712	986x426x712	1140x523x866	1140x523x866	1140x523x866	1140x523x866	1140x523x866
Packing (L x P x A)		mm	1065x485x800	1065x485x800	1180x560x890	1180x560x890	1180x560x890	1180x560x890	1180x560x890
Operation weight 230M / 400TN	2	kg	58	58	77	77	96/112	96/112	96/112
Shipping weight 230M / 400TN	2	kg	64	64	88	88	110/125	110/125	110/125

^{1.} Sound pressure level determined using the intense metric method (UNI EN ISO 9614-2). The sound levels are referred to a unit at full load, under nominal test conditions. Data referred to the following conditions: service side exchanger inlet/outlet water 47/55 °C source side exchanger inlet air 7°C. The sound pressure level refers to a distance of 1 m from the external surface of the unit operating in the free field.

^{8.} The product is conforming with the European ErP Directives, which includes Commission Delegated Regulation (EU) N. 811/2018 and Commission Delegated Regulation N. 813/2013. Clima Average, Low temperature 30/35°C

^{9.} The product is conforming with the European ErP Directives, which includes Commission Delegated Regulation (EU) N. 811/2018 and Commission Delegated Regulation N. 813/2013. Clima Average, Low temperature 12/7°C

^{10.} Data according to EN 16147: 2017

^{2.} Power supply 220-240V $^{\circ}$ 50Hz / Power supply 380-415V 3N $^{\circ}$ 50Hz

^(*) It contains fluorinated greenhouse gases.

General technical data

Construction - Indoor unit

SIZE			A - 190 L	A - 250 L	B - 250 L
System characteristics					
Maximum circuit pressure	_	bar	3,0	3,0	3,0
System expansion tank	1	I	8,0	8,0	8,0
Preload expansion tank		bar	1,0	1,0	1,0
System water connections		inch	1''	1"	1''
DHW characteristics					
Type Storage tank			Enameled steel	Enameled steel	Enameled steel
Volume of DHW tank		I	190	250	250
Internal pipe coil exchange surface		m ²	2,0	2,0	2,0
Storage dipersion		W/K (kWh/24h)	1.81 (1.95)	2.04 (2.20)	2.04 (2.20)
DHW safety heating element	-	kW	2,0	2,0	2,0
Maximum DHW circuit pressure	2	bar	10,0	10,0	10,0
Recommended sanitary expansion tank	3	I	12,0	16,0	16,0
DHW water connections		inch	3/4''	3/4''	3/4''
Dimensions					
Operation (L x P x A)	-	mm	600 x 615 x 1774	600 x 615 x 2084	600 x 615 x 2084
Packing (L x P x A)		mm	660 x 690 x 1890	660 x 690 x 2190	660 x 690 x 2190
Operation weight		kg	359	419	421
Shipping weight		kg	187	192	194

Sufficient volume up to a maximum of 60 litres of system water content.

Configuration compatibility table SPHERA EVO 2.0 Tower

INDOOR UNIT		SQKN-YEE 1 TC A	SQKN-YEE 1 TC A	SQKN-YEE 1 TC B	INTEGRATI	ON ELECTR	RIC HEATER	
	Storage	190L	250L	250L	EH024	EH3	EH6	EH9
OUTDOOR UNIT								
MISAN-YEE 1 S 2.1		√	✓	-	√		√	√
MISAN-YEE 1 S 3.1		√	✓	-	✓		√	√
Misan-yee 1 s 4.1		√	✓	-	√		✓	√
MISAN-YEE 1 S 5.1		√	✓	-	√		✓	√
MISAN-YEE 1 S 6.1		-	-	√		√	✓	√
Misan-Yee 1 S 7.1		-	-	√		√	√	√
Misan-yee 1 s 8.1		_	_	√		✓	✓	√

The installation of the sanitary side safety valve is mandatory and left to the installer.

The installation of the fixture's expansion tank is mandatory and is to be completed by the installer. The indicated volumes are for reference purposes only..

Condensing boiler technical data

MODEL				UC 24.4	UC 33.4	FE 24.4	FE 33.4
Heating capacity			_				
Naminal heating conscitu (On)		Maximum	[kW]	24,0	34,0	24,5	34,8
Nominal heating capacity (Qn)	- <u>-</u>	Minimum	[kW]	5,0	5,0	4,8	5,0
	60/80°C	Maximum	[kW]	23,4	33,2	24,0	34,0
Heating conscitut(Da)	60/80 C	Minimum	[kW]	4,8	4,8	4,7	4,9
Heating capacity (Pn)	20/5000	Maximum	[kW]	25,2	35,8	26,0	37,0
	30/50°C	Minimum	[kW]	5,3	5,4	5,2	5,4
	C0/00°C	Maximum	%	97,7	97,7	97,8	97,7
	60/80°C	Minimum	%	96,5	96,4	97,6	97,2
Performance	20/5000	Maximum	%	105,1	105,2	106,1	106,2
	30/50°C	Minimum	%	106,9	107,0	107,3	107,1
	30% di Pn	-	%	108,7	108,6	109,7	109,7
Boiler water content	-	-	[1]	2,5	2,8	3,4	4,3
	PMS	Maximum	[bar]	3	3	3	3
Operating pressure		Minimum	[bar]	0,5	0,5	0,8	0,8
	Volume	-	[1]	10	10	8	10
Expansion tank	Preload		[bar]	1	1	0,8	0,8
ACS performances			[- 01]	· · · · · · · · · · · · · · · · · · ·		-,0	
•		Maximum	[kW]	28,0	34,0	28,5	34,8
Nominal heating capacity (Qnw)	-	Minimum	[kW]	5,0	5,0	4,7	5,0
		Maximum	[kW]	27,3	33,2	28,0	34,0
Heating capacity	-	Minimum	[kW]	4,8	4,8	4,7	4,8
	ΔT=25°C	-	[l/min]	16,2	19,2	16,1	19,5
Specific flow rate	ΔT=30°C		[l/min]	13,5	16,0	13,4	16,2
	ΔT=45 K		[l/min]	9,0	10,6	8,9	10,8
	ΔT=40 K		[l/min]	10,1	11,9	10,0	12,1
HW production in continuous operation	ΔT=35 K		[l/min]	11,6	13,6	11,5	13,9
briw production in continuous operation	ΔT=30 K		[l/min] -	13,5	15,8	13,4	16,2
	ΔT=25 K		[l/min]	16,2	19,0	16,1	19,5
	Δ1-23 Κ	Maximum	[°C]	60	60	65	65
Water temperature		Minimum	- [°C]	38	38	40	40
	PMW			6	6	9	9
Operating pressure	PIVIVV	Maximum	[bar]	0,5	0,5	0,3	0,3
ErP data	-	Minimum	[bar]	0,5	0,5	0,3	0,3
EIF data		nc	%	93	93	94	94
	Heating	ης		93 A	95 A	A	94 A
Seasonal efficiency		Energy class		87	90	85	85
Medium climate	DHW	ηwh Energy class		A	A	A	A
	אחט			XL	XL		XXL
C		DHW profile				XL	
Sound power level		Lwa	[dB(A)]	53	56	49	52
Thermal losses and smoke discharge		Dway	0/	2.22	2.27	2.00	2.10
	"burner ON 80/60°C"	Pmax		2,33	2,27	2,00	2,10
Chimney losses		Pmin		2,24	2,32	2,00	2,90
	"burner ON	Pmax		1,70	1,15	1,40	1,40
	50/30°C"	Pmin		1,37	1,44	1,00	1,00
	80/60°C	Pmax	[°C]	66,5	64,9	66	67
Smoke temperature		Pmin		64,3	65,9	64	62
omoke temperature	50/30°C	Pmax	[°C]	53,6	52,7	52	53
		Pmin	[°C]	47,2	48,4	44	45
Smoke flow rate		Pmax	[g/s]	13,8	15,6	11,2	16
Smort now rate	-	Pmin	[g/s]	2,3	2,3	2,3	2,4
Nitrogen oxide (NOX) emissions		Class		6	6	6	6
This ogen onice (1107) chilosions		-	[mg/kWh]	45	49	35	33

Boilers for centralised systems

MODEL				UC 70.2	UC 115.2	UC 200.2
Heating Performance						
Modulation ratio		-	-	1: 7	1: 5.75	1: 10
Naminal host canacity (On)		Maximum	[kW]	67.5	115.0	199.0
Nominal heat capacity (Qn)	-	Minimum	[kW]	9.6	20.0	20.0
	60/80 °C	Maximum	[kW]	65.7	111.5	194.8
Haratina and air (Da)	60/80°C	Minimum	[kW]	9.1	19.2	19.1
Heating capacity (Pn)	30/50 °C	Maximum	[kW]	68.7	120.0	205.2
	30/50 C	Minimum	[kW]	10.3	21.8	21.1
	CO/00 °C	Maximum	%	97.3	97.1	97.9
	60/80 °C	Minimum	%	94.9	95.9	95.6
Efficiency	20/50.00	Maximum	%	101.7	104.6	103.1
	30/50 °C	Minimum	%	107.6	108.8	105.4
	30% of Pn	-	%	107.3	107.3	108.9
2 1 1: (6: :	Redu	ced load	%	98.3	98.3	98.2
Combustion efficiency	Nom	inal load	%	97.4	97.7	98.0
Water content			[1]	3.9	9.0	22.0
o ::	PMS	Maximum	[bar]	6	6	6
Operating pressure	-	Minimum	[bar]	0.5	0.5	0.5
ErP data		_				
Seasonal eff.	11	ης	%	93	92	93
Average climate	Heating	Energy class	-	А	A	А
Sound power level		Lwa	[dB(A)]	63	-	-
Thermal losses and discharge of	flue gas	_				
		Qn	%	0.09	0.7	0.14
Casing losses	burner ON	Qmin	%	3.44	2.69	2.60
		Pmax	%	2.62	2.29	2.00
Flue loss	burner ON	Pmin	%	1.66	1.87	1.80
Flue gas temperature		Pmax	[°C]	51.3	46.6	40
$T_{E}-T_{\Delta}$)		Pmin	[°C]	34	36	34
1 0		Pmax	[g/s]	111.4	184.6	319.57
Flue gas flow rate	-	Pmin	[g/s]	15.9	34.3	34.3
		Class	-	6	6	6
Nitrogen oxide (NOX) emissions			[mg/kWh]	59	47	68

Hydraulic data - Indoor unit + Outdoor unit

SIZE			2	2.1	3	3.1	4	.1	5	5.1	6.1	7.1	8.1
Characteristics			190 L	250 L	250 L	250 L	250 L						
Minimum system water content	1	I	4	0		10	4	0		10	40	40	40
Minimum admitted water flow rate		I/s	0,	16	0	,16	0,	16	0	,16	0,16	0,16	0,16
Maximum admitted water flow rate		I/s	0,61	0,86	0,61	0,86	0,61	0,86	0,61	0,86	0,92	0,92	0,92
Net boiler capacity		T	182	240	182	240	182	240	182	240	240	240	240
DHW tank setpoint		°C	50	50	50	50	50	50	50	50	50	50	50
Water mixed at 40°C (V40)			204	269	204	269	204	269	204	269	269	269	269
Warm-up time	2	h:min	02:30	02:25	02:30	02:25	02:08	02:05	02:08	02:05	01:46	01:46	01:46
Energy consumption during heating	3	kWh	2,20	2,70	2,20	2,70	2,30	2,85	2,30	2,85	3,01	3,01	3,01

- Consider the water content of the area with less volume
- Time required to bring the water volume of the tank from a temperature of 10°C to a temperature of 50°C Energy consumption to bring the water volume of the tank from a temperature of 10°C to a temperature of 50°C

Electrical data

Outdoor unit

	2.1	3.1	4.1	5.1	6.1	7.1	8.1
А	10.0	11.8	15.0	16.4	24.5	25.9	27.7
kW	2.20	2.60	3.30	3.60	5.40	5.70	6.10
А	10.0	11.8	16,7	16.4	24.5	25.9	27.7
А	-	-	-	-	8.20	8.70	9.30
kW	-	-	-	-	5.40	5.70	6.10
A	-	-	-	-	8.20	8.70	9.30
	kW A A kW	A 10.0 kW 2.20 A 10.0 A - kW -	A 10.0 11.8 kW 2.20 2.60 A 10.0 11.8 A	A 10.0 11.8 15.0 kW 2.20 2.60 3.30 A 10.0 11.8 16,7	A 10.0 11.8 15.0 16.4 kW 2.20 2.60 3.30 3.60 A 10.0 11.8 16,7 16.4 A	A 10.0 11.8 15.0 16.4 24.5 kW 2.20 2.60 3.30 3.60 5.40 A 10.0 11.8 16,7 16.4 24.5 A 8.20 kW 5.40	A 10.0 11.8 15.0 16.4 24.5 25.9 kW 2.20 2.60 3.30 3.60 5.40 5.70 A 10.0 11.8 16,7 16.4 24.5 25.9 A 8.20 8.70 kW 5.40 5.70

Indoor unit

SIZE		A - 190 L	A - 250 L	B - 250 L
Power supply 220-240V ~ 50Hz				
F.L.A Current draw without DHW heating element	А	0,50	0,90	0,90
F.L.A Current draw of DHW heating element	A	8,70	8,70	8,70
F.L.A TOTAL current draw under maximum conditions	A	9,20	9,60	9,60
F.L.I Power draw without DHW heating element	kW	0,10	0,20	0,20
F.L.I Power draw of DHW heating element	kW	2,00	2,00	2,00
F.L.I Total power draw under full load	kW	2,10	2,20	2,20
M.I.C Maximum inrush current of unit	A	9,20	9,60	9,60

Power supply 220-240V $^{\sim}$ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 (*) All data calculated with zero height difference and a length of 7m.

▲ Important: when rating the unit, check that the absorptions are conforming to the utility contract in the country of installation

General technical data

2 zones external kit

INDOOR UNIT 220-240V ~ 50HZ

Power supply		220-240V ~ 50Hz
F.L.A Full load current at max admissible conditions	А	0,45
F.L.I Full load power input at max admissible conditions	kW	0,10

Power supply 220-240V $^{\sim}$ 50Hz +/-10%.

The units are conforming with the prescriptions of European Standards CEI EN 60335.

Auxiliary condensate collection tray

INDOOR UNIT 220-240V ~ 50HZ

Power supply		220-240V ~ 50Hz
F.L.A Full load current at max admissible conditions	Α	0,40
F.L.I Full load power input at max admissible conditions	kW	0,08

Power supply 220-240V $^{\sim}$ 50Hz +/-10%.

The units are conforming with the prescriptions of European Standards CEI EN 60335.

Additional electric heater - EH024/EH3/EH6/EH9

SIZE		2 kW	3 kW	4 KW
Power supply 220-240V ~50Hz				
F.L.A Full load current at max admissible conditions	А	8,70	13,1	17,4
F.L.I Full load power input at max admissible conditions	kW	2,00	3,00	4,00

Power supply 220-240V ~50Hz +/- 10%

Size 2kW and 4kW available only for indoor unit A, size 3kW available only for indoor unit B

SIZE		6 kW	9 kW
Power supply 380-415V 3N ~50Hz			
F.L.A Full load current at max admissible conditions	А	8,60	13,0
F.L.I Full load power input at max admissible conditions	kW	6,00	9,00

Power supply 380-415V 3N ~50Hz +/- 6%.

Data to be added to the values of the standard unit without DHW electric heater.

⚠ The additional electric heater is not an accessory supplied separately, but a construction configuration.

Electrical data of the hybrid solution condensing boiler

MODEL			UC 24.4	UC 33.4	FE 24.4	FE 33.4
Power supply		[V-Hz]	230/50	230/50	230/50	230/50
F.L.A Full load current at max admissible conditions	-	[A]	0,41	0,53	0,36	0,43
F.L.I Full load power input at max admissible conditions	-	[kW]	0,095	0,122	0,082	0,099
Power supply fuse	-	-	3,15	3,15	3,15	3,15
Protection rating	IP	-	X5D	X5D	X4D	X4D

Power supply: +/-10%

The units comply with the requirements of European standards EN 60335-1 and EN 60335-2-40

Data to be added to standard indoor unit values.

Sound levels outdoor unit

Standard mode

	Sound power level							Sound pressure	Sound	
SIZE		Octave band (Hz)								level
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
2.1	46	49	49	52	52	46	37	27	42	55
3.1	49	48	50	55	53	48	39	30	44	57
4.1	36	51	53	56	55	49	44	30	45	58
5.1	37	56	53	57	57	51	47	36	47	60
6.1	44	53	54	60	58	55	52	51	50	63
7.1	44	54	55	60	59	57	56	54	51	64
8.1	46	58	57	60	61	59	54	51	53	66

Sound levels refer to units with full load under nominal test conditions. Data referred to the following conditions: entering / leaving exchanger water temperature user side 47/55°C source side exchanger air inlet 7°C. The sound pressure level refers to a distance of 1m from the external surface of the units operating in an open field. Noise levels are determined using the tensiometric method (UNI EN ISO 9614-2).

Silenced mode

SIZE	Sound pressure level	Sound power level
	dB(A)	dB(A)
2.1	40	53
3.1	40	53
4.1	42	55
5.1	42	55
6.1	46	59
7.1	47	60
8.1	48	61

Sound levels refer to units with full load under nominal test conditions.

For maximum capacity delivered in silent mode use a correction factor of 0.8.

Data referred to the following conditions: entering / leaving exchanger water temperature user side 47/55°C source side exchanger air inlet 7°C.

The sound pressure level refers to a distance of 1m from the external surface of the units operating in an open field.

Noise levels are determined using the tensiometric method (UNI EN ISO 9614-2).

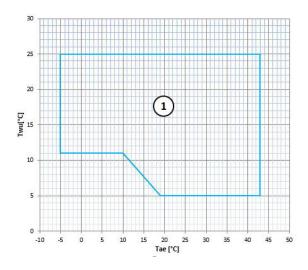
Super-silenced mode

SIZE	Sound pressure level	Sound power level
	dB(A)	dB(A)
2.1	37	50
3.1	38	51
4.1	39	52
5.1	39	52
6.1	41	54
7.1	41	54
8.1	41	54

Sound levels refer to units with full load under nominal test conditions.

For maximum capacity delivered in silent mode use a correction factor of 0.6

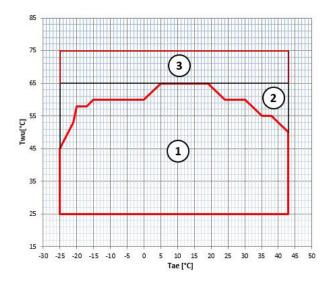
Data referred to the following conditions: entering / leaving exchanger water temperature user side $47/55^{\circ}\text{C}$ source side exchanger air inlet 7°C .


The sound pressure level refers to a distance of 1m from the external surface of the units operating in an open field.

Noise levels are determined using the tensiometric method (UNI EN ISO 9614-2).

General technical data

Operating limits

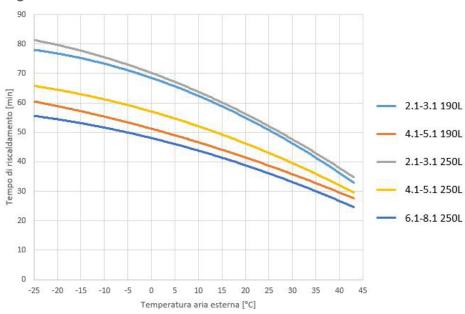

Cooling

Twu [°C] = Exchanger water outlet temperature Tae [°C] = Outdoors exchanger air inlet temperature

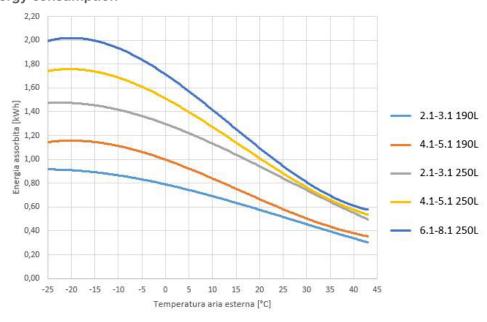
1. Normal operating range

Heating

Twu [°C] = Exchanger water outlet temperature Tae [°C] = Outdoors exchanger air inlet temperature


- Normal operating range
 Operating range with additional electric heater option
- 3. Hybrid system operating range

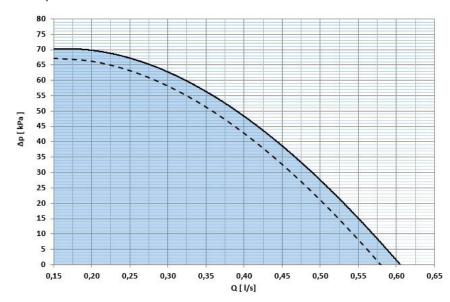
In the configuration with the integration electric heater, the extension of the limits varies $% \left(1\right) =\left(1\right) \left(1\right) \left$ according to the electrical capacity of the electric heater chosen.


Performance curves in domestic hot water production

Curves referring to the switch-on of the unit from which 90 litres of water were taken out of a total of about 190 available (at an equivalent temperature of 40°C).

Heating time

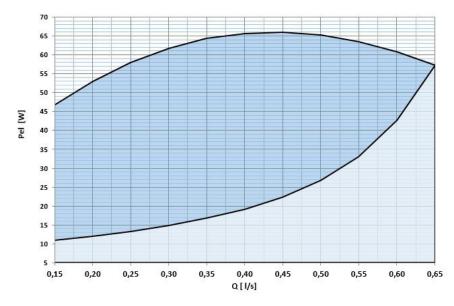
Energy consumption



Nominal test conditions:

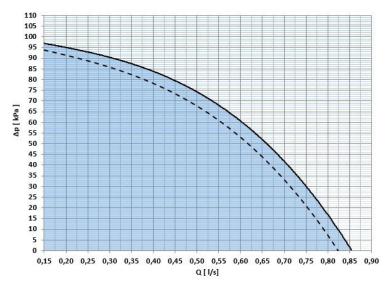
- Storage temperature (T5) at power-off = 50°C
- Storage temperature (T5) at switch-on = 40°C
- Amount drawn = 3 I/min

General technical data


Available pressure of the standard circulator at the unit 190 L A connections

 ΔP [kPa] = Available pressure Q[I/s] = Water flow-rate

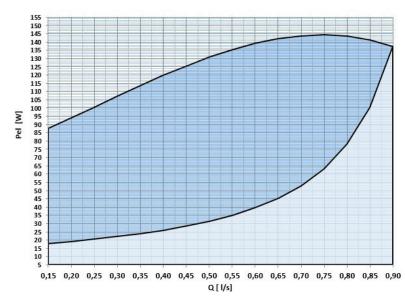
Maximum head of the circulator with configuration of integration electric heater Circulator operating field


Absorption of the standard circulator at the unit 190 L - A

Pel [W] = Electrical power input Q[I/s] = Water flow-rate

Circulator operating field

Available pressure of the standard circulator at the unit 250 L A connections

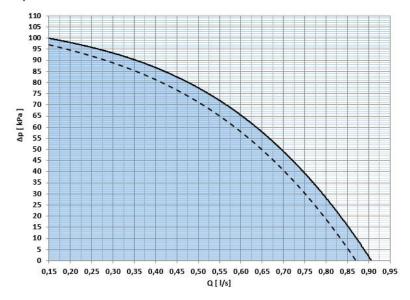


 ΔP [kPa] = Available pressure Q [l/s] = Water flow-rate

Maximum head of the circulator with configuration of integration electric heater

Circulator operating field

Absorption of the standard circulator at the unit 250 L - A

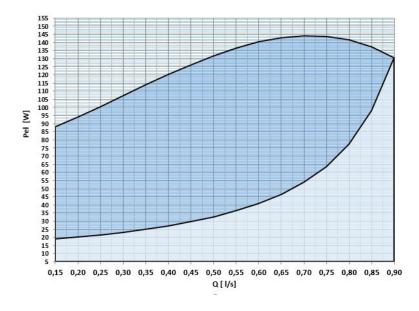


Pel [W] = Electrical power input Q [I/s] = Water flow-rate

Circulator operating field

General technical data

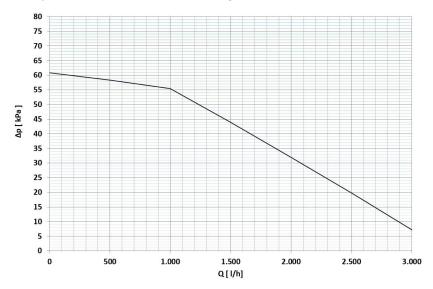
Available pressure of the standard circulator at the unit 250 L B connections



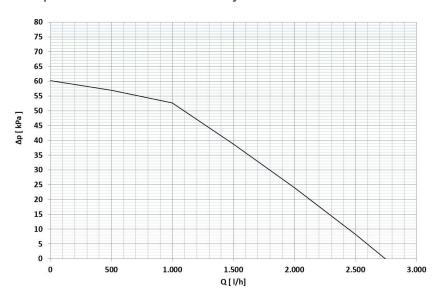
 ΔP [kPa] = Available pressure Q [l/s] = Water flow-rate

Maximum head of the circulator with configuration of integration electric heater.

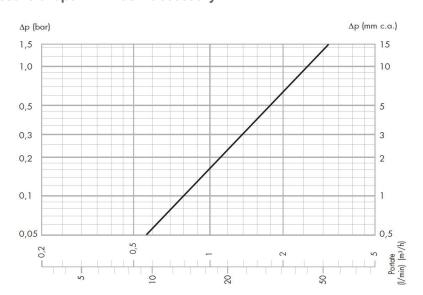
Circulator operating field


Absorption of the standard unit 250 L - B

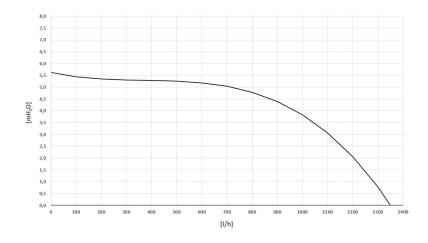
Pel [W] = Electrical power input Q [l/s] = Water flow-rate


Circulator operating field

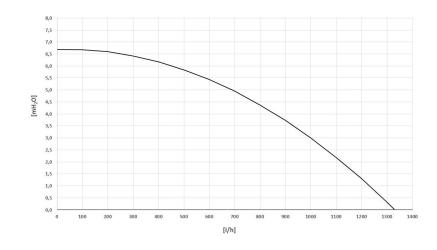
Available pressure for direct booster system circulator


 ΔP [kPa] = Available pressure Q [l/h] = Water flow-rate

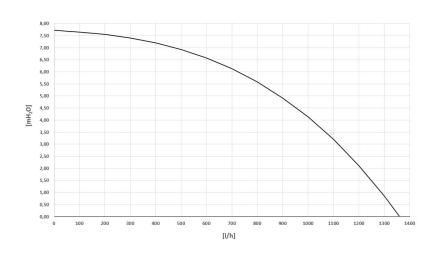
Available pressure for mixed booster system circulator


Pel [W] = Electrical power input Q [l/h] = Water flow-rate

Pressure drops - VDACSX accessory


General technical data

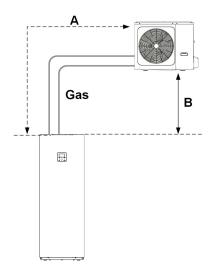
Available pressure of the circulator - GAS BOILER UC


[mH₂O] = Available pressure [I/h] = Water flow-rate

Available pressure of the circulator - GAS BOILER FE 24.4

[mH₂O] = Available pressure[l/h] = Water flow-rate

Available pressure of the circulator - GAS BOILER FE 33.4

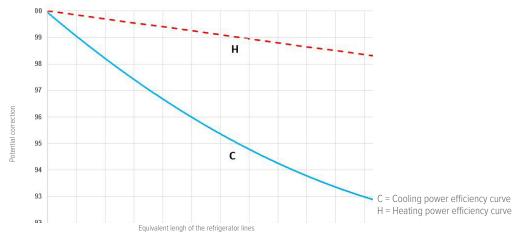

[mH₂O] = Available pressure[I/h] = Water flow-rate

Sizing the refrigerant pipes

Equivalent length of pipes (metres) = Effective length (metres) + Number of bends x K Consider K= 0.3 m per wide radius elbow bend.

Consider K=0.5 m per standard 90° elbow bend.

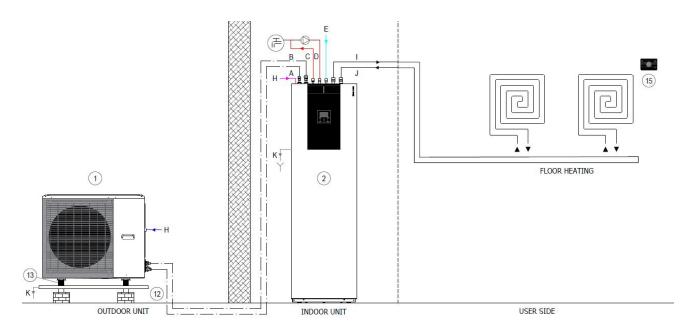
to correctly install the refrigerant pipes and charge the refrigerant gas, refer to the SPHERA MANUAL



SIZE		2.1	3.1	4.1	5.1	6.1	7.1	8.1
Length and height difference of refrigerant pipes								
A - Refrigerant pipe min/max equivalent length	m	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30
B - Maximum refrigerant pipe height difference with outdoor unit higher than indoors unit	m	25	25	25	25	25	25	25
B - Maximum refrigerant pipe height difference with outdoor unit underthan indoor unit	m	25	25	25	25	25	25	25
Diameters of refrigerant pipes								
Gas pipe diameter	inch	5/8"	5/8"	5/8"	5/8"	5/8"	5/8"	5/8"
Fluid line diameter	inch	1/4"	1/4"	3/8''	3/8''	3/8''	3/8''	3/8''
Additional charge per meter	kg/m	0,020	0,020	0,038	0,038	0,038	0,038	0,038

The refrigerant pre-charge in the outdoor units is sufficient for connection up to $15\ m.$

Determination of cooling and heating power loss

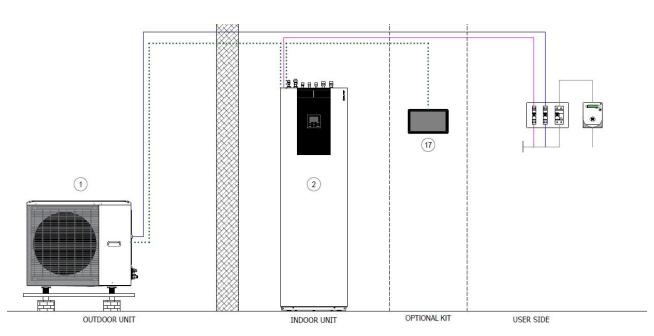

The equivalent length of the cooling lines results in a loss of cooling and heating power supplied to the circuit and DHW system. The graph shows the amount of this loss of powergh

Water connections

Here are some diagrams of system connections provided as an indication. The connection and design of the system must be carried out in accordance with national regulations in force.

The diagrams do not report the mandatory components to be taken care of by the customer.

- 1. Outdoor unit
- 2. Indoor unit
- 3. 2 zone kit (KIRE2HX-KIRE2hXL)
- 4. Single zone kit (KCSX)
- 5. Integration electric heater (EH024 EH3 EH6 EH9)
- 6. Drain-back solar integration for domestic hot water (SOLX) --> only Tower
- 7. Solar panel
- 8. Hybrid solution (HYSO24 HYSO34)
- 9. 40L inertial storage tank (ACI40X)
- 10. 1-litre circuit breaker (DIX)
- 11. 50-litre circuit breaker- 60L inertial storage tank (DI50X ACI60X)
- 12. Condensate drain pan (DTX)
- 13. Anti-vibration mount (APAVX ASTFX)
- 14. Brackets wall (KSIPX)
- 15. Chronothermostat (HID-TCXB HID-TCXN)
- 16.DHW storage (ACS200X- ACS300X ACS500X + SCS08X SCS12X)
- 17. ElfoControl³ EVO
- 220-240V~50Hz 380-415V 3N ~50HZ con EH3 - EH6 - EH9 2.1 - 5.1 single phase 220-240V ~50Hz 6.1 - 8.1 single phase 220-240V ~50Hz 6.1 - 8.1 three-phase 380415V 3N $^{\sim}$ 50Hz BUS RS 485 Technical water Domestic cold water Domestic hot water Condensate drain


- A. Liquid line
- B. Gas line
- C. DHW outlet
- D. DHW recirculation inlet
- E. Aqueduct inlet
- F. Solar outlet
- G. Solar inlet
- H. Power input
- I. System return
- J. System supply
- K. Condensate drain

Electrical connections

The electrical hookup must be conforming with the local regulations. The hookup must be done by a specialised technician, qualified to work on live equipment.

SPHERA EVO 2.0 can be controlled with the on-board controller. To operate the unit, you may use: the ELFOControl³ EVO supervision system or normal electromechanical thermostats.

For more information on connections, consult the installation manual.

- 1. Outdoor unit
- 2. Indoor unit
- 3. 2 zone kit (KIRE2HX-KIRE2hXL)
- 4. Single zone kit (KCSX)
- 5. Integration electric heater (EH024 EH3 EH6 EH9)
- 6. Drain-back solar integration for domestic hot water (SOLX) --> only Tower
- 7. Solar panel
- 8. Hybrid solution (HYSO24 HYSO34)
- 9. 40L inertial storage tank (ACI40X)
- 10. 1-litre circuit breaker (DIX)
- 11. 50-litre circuit breaker- 60L inertial storage tank (DI50X ACI60X)
- 12. Condensate drain pan (DTX)
- 13. Anti-vibration mount (APAVX ASTFX)
- 14. Brackets wall (KSIPX)
- 15. Chronothermostat (HID-TCXB HID-TCXN)
- 16.DHW storage (ACS200X- ACS300X ACS500X + SCS08X SCS12X)
- 17. ElfoControl³ EVO

220-240V~50Hz

380-415V 3N ~50HZ con EH3 - EH6 - EH9

- 2.1 5.1 single phase 220-240V $^{\sim}50 \text{Hz}$
- 6.1 8.1 single phase 220-240V ~50Hz
- 6.1 8.1 three-phase 380415V 3N~50Hz

BUS RS 485

Technical water

Domestic cold water

Domestic hot water

Condensate drain

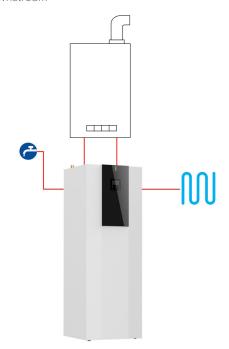
- A. Liquid line
- B. Gas line
- C. DHW outlet
- D. DHW recirculation inlet
- E. Aqueduct inlet
- F. Solar outlet
- G. Solar inlet
- H. Power input I. System return
- J. System supply
- K. Condensate drain

Auxiliary and hybrid version heat sources

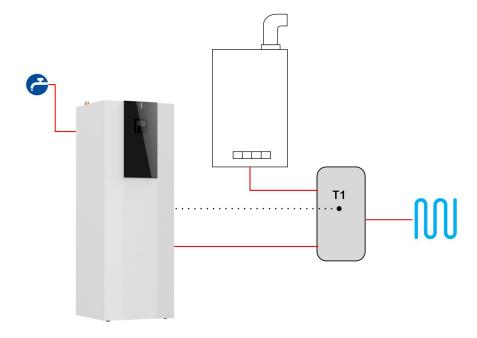
The electrical connection must be carried out in accordance with national regulations in force. The connection must be carried out by specialised personnel who are qualified to work with live voltage.

SPHERA EVO 2.0 can be controlled with the built-in control panel. The unit can be called using: the ELFOControl3 EVO supervisory system or common electromechanical thermostats.

Refer to the installation manual for more information on the connections.


♠ Only one of IBH or AHS can be managed

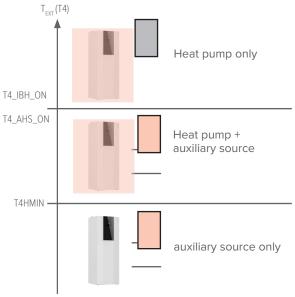
The additional electric heater or boiler can operate as::


- Integration: when it is not convenient/possible to work with the heat pump capacity alone
- Replacement: outside the work settings of the heat pump
- Back-up: in case of unit failure (the unit keeps the pump running at maximum speed)

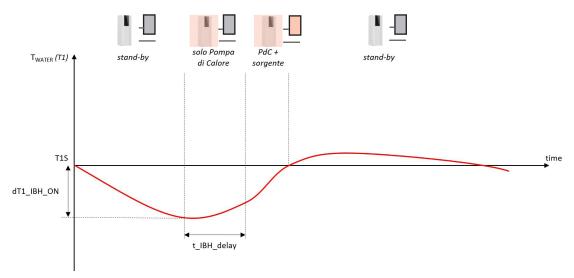
A third-party supplier's boiler, if any, must be installed in parallel with the heat pump and can act:

on the system and DHW: installed directly on the system, in this case its operation will require a dedicated T1 temperature probe (to be selected separately) to be installed downstream

- A Requires installation of the KCCEX kit, the T1 probe is included and must be fitted inside the indoor unit downstream of the boiler
- only on the system: installed on a hydraulic separator, where the T1 probe (to be selected separately) must also be fitted


Auxiliary and hybrid version heat sources

The activation operating mode (in Heating, DHW production or both) must be selected with the dip-switches on the board during instal-


Activation of the auxiliary source is linked to the simultaneous presence of 3 conditions, each of which is associated with a parameter that can be adjusted during initial start-up on the user interface:

• very low outdoor temperature

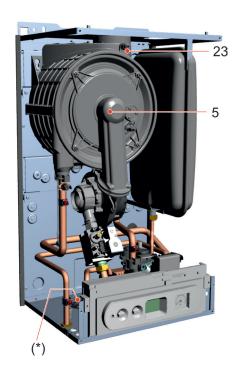
parameter T4_IBH_ON or T4_AHS_ON (default -5°C, adjustable -15÷30): the minimum outdoor air temperature for heat pump operation only

- 1 To make the auxiliary source work only as a replacement for the unit, set the parameter to the same value as T4HMIN (default -15°C, adjustable -25÷15): the minimum outdoor air temperature at which the heat pump can operate.
- supply temperature too far from the set-point parameter dT1_IBH_ON or dt1_AHS_ON (default 5°C, adjustable 2÷10): the minimum ΔT between the water set-point TS1 and unit supply set-point T1
- too long to reach the set-point parameter t_IBH_DELAY or t_AHS_DELAY (default 30min, adjustable 5÷120): the maximum waiting time between compressor start-up and auxiliary source activation

⚠ The BACKUP HEATER function on the HMI allows activation of the IBH or AHS auxiliary source to be forced

The unit can manage the AHS set-point dynamically with a 0-10V signal, with parameters:

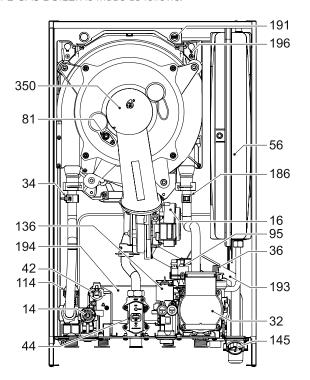
- MAX_SETHEATER (default: 80°C, adjustable) and MIN_SETHEATER (default: 30°C, adjustable): the minimum and maximum set-points that can be set in the boiler
- MAX_SIGHEATER (default: 10V, adjustable) and MIN_SIGHEATER (default: 3V, adjustable): the 0-10V signals linked to the minimum
 and maximum set-points that can be set in the boiler

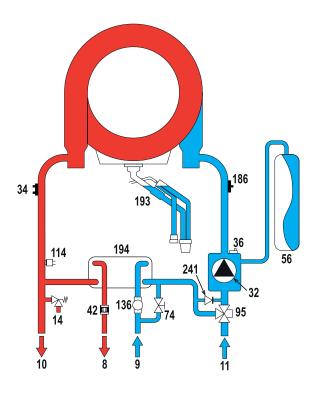

Auxiliary and hybrid version heat sources

Hybrid versions with UC version boiler

The hybrid heat pumps are equipped with a 4-pipe boiler for DHW production and Heating.

The UC GAS BOILER is made as follows:

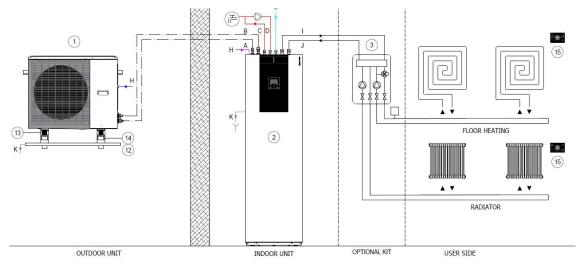

#	NAME	DESCRIPTION
1	SS	DHW water temperature sensor
2	FLS	Flow switch with cold water filter
3	VG	Gas valve
4	E.ACC/RIL	Switch-on Electrode/ detection
5	-	Burner
8	-	Expansion tank
10	TL	Safety thermostat
11	SR	Water temperature sensor - Hating supply
12	Р	Circulator
13	DK	Low water control pressure switch
16	-	Switching valve
17	-	DHW plate exchanger
18	VM	Fan
20	-	Pressure relief valve
22	SRR	Water temperature sensor - return
23	TLC	Smoke manifold safety thermostat
24	-	Steel exchanger/condenser
(*)	-	Condensate drain trap outlet position
С	-	DHW output (G 1/2")
G	-	Gas inlet (G 3/4")
F	-	Water inlet for DHW (G 1/2")
M	-	System supply (G 3/4")
R	-	System return (G 3/4")


Auxiliary and hybrid version heat sources

Versioni ibride con caldaia in versione FE

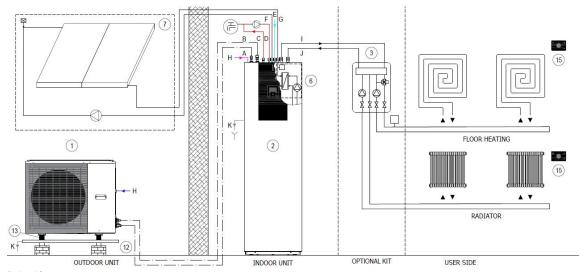
FE GAS BOILER is a boiler designed to operate on Natural Gas (G20), Liquid Gas (G30-G31), Propane Air (G230) and it can also regulate itself to operate with natural gas and hydrogen mixtures (80%/20%).

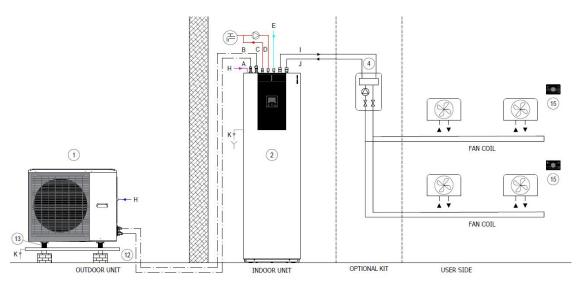

The FE GAS BOILER is made as follows:

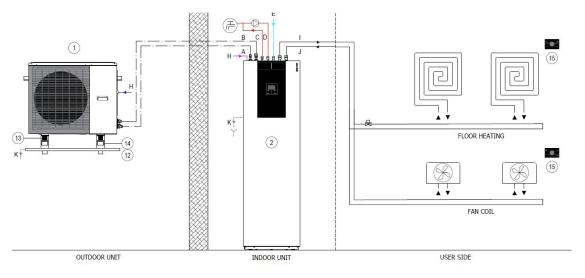


#	DESCRIPTION					
8	DHW outlet (G 1/2")					
9	DHW water inlet (G 1/2")					
10	System supply (G 3/4")					
11	System return (G 3/4")					
14	Pressure relief valve					
16	Fan					
32	Circulator					
34	Water temperature sensor - Hating supply					
36	Automatic air vent					
42	DHW water temperature sensor					
44	Gas valve					
56	Expansion tank					
74	System filling shut-off valve					
81	Switch-on Electrode/ detection					
95	Switching valve					
114	Water pressure switch					
136	Flowmeter					
145	Hydrometer					
186	Water temperature sensor - return					
191	Smoke temperature sensor					
193	Sifone					
194	Plate heat exchanger for DHW					
196	Drain pan					
241	Automatic bypass (inside the pump group)					
350	Burner group/fan					

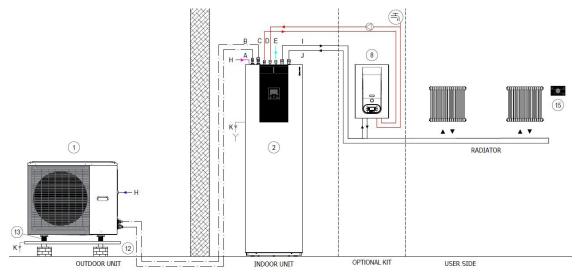

System connections


Additional electric heater

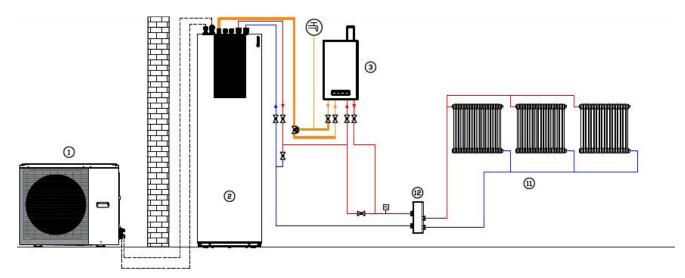

2 zone kit


Single zone

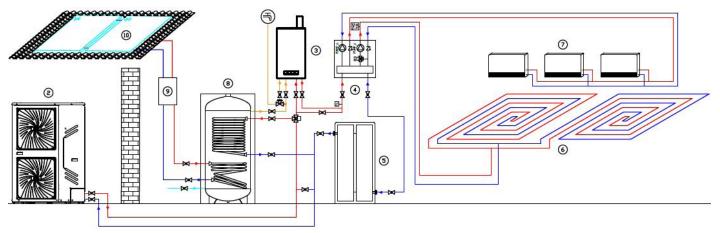
Solar kit

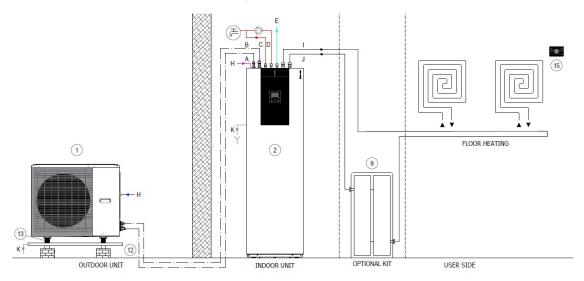


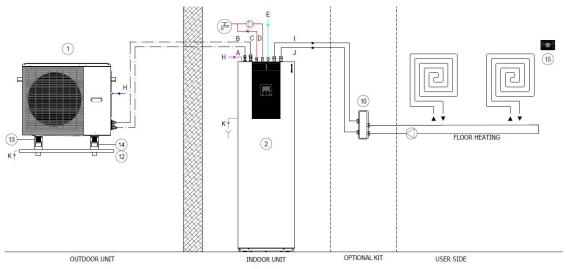
Single zone kit



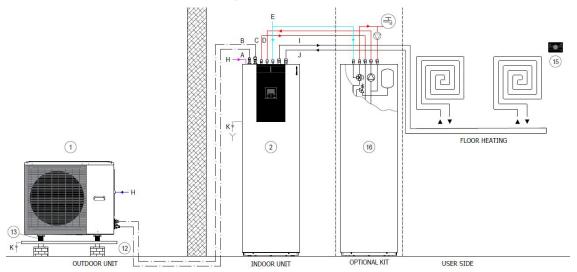
Single zone V2 by the customer) Shut-off valve to exclude the radiant floors in summer mode.

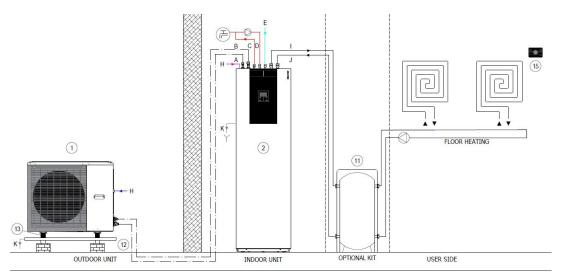

System connections


Hybrid solution


Hybrid solution "Factory made"

Hybrid solution "Factory made" with DHW storage tank ACS


40 or 60 L inertial storage


1 L circuit breaker

System connections

General description of the system and possible connections

Additional 250 L storage tank

50L circuit breaker - 60L inertial storage tank

- 1. Outdoor unit
- 2. Indoor unit
- 3. 2 zone kit (KIRE2HX-KIRE2hXL)
- 4. Single zone kit (KCSX)
- 5. Integration electric heater (EH024 EH3 EH6 EH9) 6. Integrazione solare per sanitario (SOLX) --> solo nel tower
- 7. Solar panel
- 8. Hybrid solution (HYSO24 HYSO34)
- 9. 40L inertial storage tank (ACI40X)
- 10. 1-litre circuit breaker (DIX)
- 11. 50-litre circuit breaker- 60L inertial storage tank (DI50X ACI60X)
- 12. Condensate drain pan (DTX)
- 13. Anti-vibration mount (APAVX ASTFX)
- 14. Brackets wall (KSIPX)
- 15. Chronothermostat (HID-TCXB HID-TCXN)
- 16.DHW storage (ACS200X- ACS300X ACS500X + SCS08X SCS12X)
 17. ElfoControl³ EVO

220-240V~50Hz

380-415V 3N ~50HZ con EH3 - EH6 - EH9

2.1 - 5.1 single phase 220-240V $^{\sim}$ 50Hz

6.1 - 8.1 single phase 220-240V ~50Hz

6.1 - 8.1 three-phase 380415V 3N~50Hz

BUS RS 485 Technical water Domestic cold water Domestic hot water Condensate drain

- A. Liquid line
- B. Gas line
- C. DHW outlet
- D. DHW recirculation inlet
- E. Aqueduct inlet
- F. Solar outlet
- G. Solar inlet
- H. Power input
- I. System return
- J. System supply
- K. Condensate drain

Clivet S.p.A. declares that the data to be used for the calculation pursuant to UNI/TS 11300 part 4 of the efficiency of their heat pump are given in the following tables.

The data given in this document may be updated without advance notice by the manufacturer when upgrading his product range..

UNI/TS 11300 Part 4

CDLIEDA	E 10	-		0.4
SPHERA	EVO	2.0 -	Size	2.1

Data for determina	ation of COPPL T delivery 20°C	Tdesignh	Α	В	С	D
	Te	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		4,74	4,50	4,32	4,33
	CR		1,00	0,65	0,44	0,19
2.1	Р	5,39	4,74	3,05	1,99	1,45
	COP (part load)		3,15	4,96	6,81	6,23
	COP (full load)		3,15	4,46	5,42	6,37
	Fcop		1,00	1,11	1,26	0,98
ata to be provide	ed for power and COP under full load colo	d source air	,			
	Te	Tm	-7	2	7	12
		35°C	4,74	4,50	4,32	4,33
	Heating capacity ΦH,HP out (kW)	45°C	4,31	4,35	4,16	4,16
		55°C	4,40	4,40	4,08	4,50
2.1		35°C	3,15	4,46	5,42	6,37
	СОР	45°C	2,51	3,27	3,93	4,52
		55°C	1,99	2,56	3,00	3,44
HW Power and C	OP data under full load				Ге	
	Te	Tm	7	15	20	35
2.1	Heating capacity ΦH,HP out (kW)	55°C	4,08	5,11	5,71	6,85
2.1	СОР	55°C	3,00	3,84	4,23	3,90
ata for determina	ation of COPPL T delivery 20°C	Tdesignh	Α	В	C	D
	Te	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		5,51	5,89	6,18	6,28
	CR		1,00	0,57	0,35	0,15
3.1	P	6,26	5,51	3,30	2,24	1,45
	COP (part load)		3,13	4,91	7,11	5,70
	COP (full load)		3,13	4,15	5,21	6,10
	Fcop		1,00	1,18	1,36	0,93
ata to be provide	ed for power and COP under full load cold s		7	_	Te 7	
	Te	Tm	-7 E E1	2	7	12
	Heating capacity ΦH,HP out (kW)	35°C 45°C 45°C	5,51 5,22	5,89 6,42	6,18	6,28
	riedding Capacity WH, HF Out (KW)	55°C	5,22 5,15	5,46	5,94	6,64
3.1		35°C	3,13	4,15	5,34	6,10
	COP	45°C	2,41	3,07	3,83	4,41
	301	55°C	2,03	2,56	3,07	3,55
HW Power and C	OP data under full load		2,50		 Ге	
	Te	Tm	7	15	20	35
	Heating capacity ΦH,HP out (kW)	55°C	5,94	6,99	7,33	8,80
3.1	COP	55°C	3,07	3,97	4,44	4,10
			-,	- /		-,,

PLR

SPHERA EVO 2.0 - Size 4.1

Data for determination of COPPL T delivery 20°C

	I LIX	10070	0070	J+70	3370	13 /0
	DC		7,15	5,64	8,30	8,21
	CR		1,00	0,78	0,34	0,15
4.1	P	8,13	7,15	4,65	2,91	1,85
	COP (part load)		3,30	5,17	7,08	6,01
	COP (full load)		3,30	3,69	5,31	6,41
	Fcop		1,00	1,40	1,33	0,94
ta to be provide	d for power and COP under full load cold s	ource air			Те	
	Те	Tm	-7	2	7	12
		35°C	7,15	5,64	8,30	8,21
	Heating capacity ΦH,HP out (kW)	45°C	6,34	6,59	8,22	8,07
44		55°C	6,08	6,27	7,50	7,55
4.1		35°C	3,30	3,69	5,31	6,41
	COP	45°C	2,56	3,26	3,95	4,69
		55°C	2,17	2,69	3,19	3,72
W Power and C	OP data under full load			-	Ге	
	Те	Tm	7	15	20	35
4.1	Heating capacity ΦH,HP out (kW)	55°C	7,50	8,37	9,18	11,02
4.1	COP	55°C	3,19	4,11	4,50	4,15
HERA EVO 2.0 -	Size 5.1 ation of COPPL T delivery 20°C	Tdesignh	A	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		8,45	9,30	10,09	10,26
	CR		1,00	0,56	0,33	0,14
5.1	Р	9,60	8,45	5,23	3,47	1,96
	COP (part load)		3,18	5,03	7,33	6,16
	COP (full load)		3,18	4,12	5,01	5,97
	Fcop		1,00	1,22	1,46	1,03
a to be provide	d for power and COP under full load cold s	ource air			Ге	
	Те	Tm	-7	2	7	12
		35°C	8,45	9,30	10,09	10,26
	Heating capacity ΦH,HP out (kW)	45°C	7,71	9,16	10,01	10,06
5.1		55°C	7,08	8,49	9,60	9,19
5.1	· · · · · · · · · · · · · · · · · · ·	3E ₀ C	3 10	// 12	5.01	5.07

35°C

45°C

55°C

Tm

55°C

55°C

Tdesignh

-10

100%

88%

В

54%

С

35%

D

12

15%

Terms and definitions

Tm = Delivery temperature

5.1

Tdesignh = A - Average design climate temperature (pursuant to UNI EN 14825)

A, B, C, D = names of the four conditions with which different outdoors air temperatures are associated (Te)

COP

Te

Heating capacity ΦH,HP out (kW)

COP

Te = Outdoors air temperature

PLR = part load ratio

DC = power under full load referred to the specified temperatures

DHW Power and COP data under full load

CR = heat pump load factor

3,10 P = system power demand

3,18

2.59

2,11

7

9,60

Te

COP' (full load) = COP under full load referred to the indicated outdoors air temperatures COP' (partial load) = COP under partial load referred to the indicated outdoors air temperatures

4,12

3,11

2,66

15

8,99

4,03

5,01

3,86

3,10

20

8,78

4,53

5,97

4,32

3,65

35

10,54

4,18

fCOP = COP correction factor, as follows: COP' (full load) / COP (partial load)HP= heat pump DHW = domestic hot water

SPHERA EVO 2.0 - Size 6.1

Data for determina	ation of COPPL T delivery 20°C	Tdesignh	Α	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		10,69	13,01	12,13	12,26
	CR		1,00	0,50	0,35	0,15
6.1	P	12,14	10,69	6,57	4,48	3,67
	COP (part load)		3,07	4,68	6,90	6,33
	COP (full load)		3,07	3,93	5,00	5,68
	Fcop		1,00	1,19	1,38	1,12
ata to be provide	ed for power and COP under full load cold s	ource air		1	Ге	
	Те	Tm	-7	2	7	12
		35°C	10,69	13,01	12,13	12,26
	Heating capacity ΦH,HP out (kW)	45°C	11,21	12,52	12,30	11,56
64		55°C	10,10	12,05	12,07	10,89
6.1		35°C	3,07	3,93	5,00	5,68
	COP	45°C	3,14	3,34	3,80	4,59
		55°C	1,76	2,88	3,10	3,78
HW Power and C	OP data under full load			1	Īe .	
	Те	Tm	7	15	20	35
6.1	Heating capacity ФН,НР out (kW)	55°C	12,07	12,30	13,71	16,45
0.1	СОР	55°C	3,10	4,19	4,59	4,23

Data for determina	ation of COPPL T delivery 20°C	Tdesignh	Α	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		12,33	12,71	14,51	12,31
	CR		1,00	0,60	0,34	0,17
7.1	P	14,01	12,33	7,97	5,21	3,67
	COP (part load)		2,87	4,62	7,07	6,70
	COP (full load)		2,87	4,00	4,70	5,70
	Fcop		1,00	1,16	1,50	1,18
ata to be provide	ed for power and COP under full load cold so	ource air			Ге	
	Те	Tm	-7	2	7	12
		35°C	12,33	12,71	14,51	12,31
	Heating capacity ΦH,HP out (kW)	45°C	11,27	11,21	14,00	11,61
7.1		55°C	10,35	11,71	13,85	10,94
7.1		35°C	2,87	4,00	4,70	5,70
	COP	45°C	2,61	3,11	3,65	4,61
		55°C	2,18	2,91	3,05	3,80
HW Power and C	COP data under full load		Те			
	Те	Tm	7	15	20	35
	Heating capacity ФН,НР out (kW)	55°C	13,85	12,35	13,76	16,51
7.1	СОР	55°C	3,05	4,21	4,60	4,25

Terms and definitions

Tm = Delivery temperature

Tdesignh = A - Average design climate temperature (pursuant to UNI EN 14825)

A, B, C, D = names of the four conditions with which different outdoors air temperatures are associated (Te)

Te = Outdoors air temperature

PLR = part load ratio

DC = power under full load referred to the specified temperatures

CR = heat pump load factor

P = system power demand

COP' (full load) = COP under full load referred to the indicated outdoors air temperatures COP' (partial load) = COP under partial load referred to the indicated outdoors air

fCOP = COP correction factor, as follows: COP' (full load) / COP (partial load)HP= heat pump DHW = domestic hot water

SPHERA EVO 2.0 - Size 8.1

Data for determina	ation of COPPL T delivery 20°C	Tdesignh	Α	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		13,82	14,30	16,01	15,20
	CR		1,00	0,59	0,34	0,16
8.1	P	15,71	13,82	8,55	5,88	3,67
	COP (part load)		2,86	4,59	7,13	6,44
	COP (full load)		2,86	3,85	4,55	5,43
	Fcop		1,00	1,19	1,57	1,19
Data to be provide	d for power and COP under full load cold s	ource air		1	- e	
	Те	Tm	-7	2	7	12
		35°C	13,82	14,30	16,01	15,20
	Heating capacity ΦH,HP out (kW)	45°C	12,35	13,79	16,01	14,55
0.4		55°C	11,23	13,32	16,00	13,91
8.1		35°C	2,86	3,85	4,55	5,43
	СОР	45°C	2,58	3,28	3,60	4,49
		55°C	2,13	2,80	2,90	4,00
OHW Power and C	OP data under full load			1	ē	
	Te	Tm	7	15	20	35
0.4	Heating capacity ФН,НР out (kW)	55°C	16,00	13,91	13,90	16,68
8.1	СОР	55°C	2,90	4,39	4,86	4,49

Terms and definitions

Tm = Delivery temperature

Tdesignh = A - Average design climate temperature (pursuant to UNI EN 14825)

A, B, C, D = names of the four conditions with which different outdoors air temperatures are associated (Te)

Te = Outdoors air temperature

PLR = part load ratio

DC = power under full load referred to the specified temperatures

CR = heat pump load factor

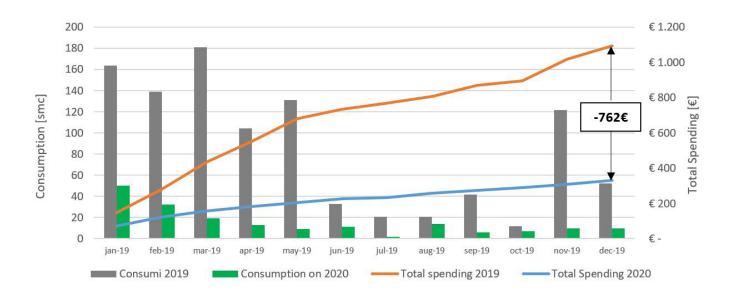
P = system power demand

COP' (full load) = COP under full load referred to the indicated outdoors air temperatures COP' (partial load) = COP under partial load referred to the indicated outdoors air

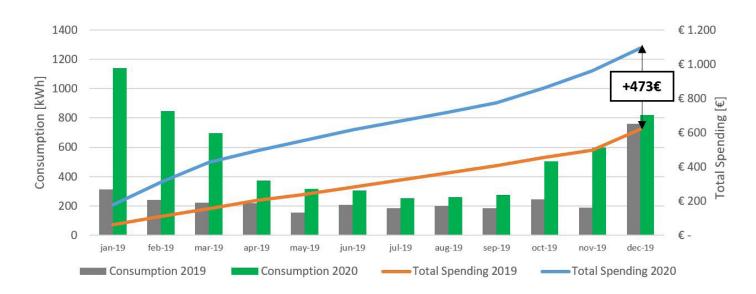
fCOP = COP correction factor, as follows: COP' (full load) / COP (partial load) HP= heat pump DHW = domestic hot water

The specified data refer to the nominal power values under the declared conditions

UNI/TS 11300 Part 3


SIZE		Cooling capacity kW				EER			
Test	1	2	3	4	1	2	3	4	
	100%	75%	50%	25%	100%	75%	50%	25%	
220-240V N 50Hz									
2.1	4,26	3,20	2,05	0,90	3,50	4,71	5,84	5,81	
3.1	6,25	4,59	2,96	1,35	3,09	4,43	6,17	7,40	
4.1	7,46	5,20	3,51	1,63	3,33	4,48	6,67	9,30	
5.1	9,10	6,43	4,25	1,94	3,09	4,26	6,73	10,48	
6.1	11,80	8,89	6,01	2,91	2,75	3,89	5,73	7,88	
7.1	12,86	9,40	6,29	2,91	2,55	3,78	5,71	7,88	
SIZE		Cooling capacity kW				E	ER		
8.1	14,20	10,53	7,12	2,91	2,45	3,54	5,38	7,88	

Reference conditions prescribed by UNI/TS 11300-3:


- External air temperature B.S. 35°C Refrigerated water temperature at the fancoil inlet/outlet 12/7 °C
- 2. External air temperature B.S. 30°C Refrigerated water temperature at the fancoil outlet /7 °C
- 3. External air temperature B.S. 25°C Refrigerated water temperature at the fancoil outlet /7 °C
- 4. External air temperature B.S. 20°C Refrigerated water temperature at the fancoil outlet /7 °C

Compared to traditional systems, SPHERA EVO 2.0 provides numerous advantages from an economic point of view and in terms of energy. Below is a real case in a domestic system before and after replacing a gas boiler with a SPHERA EVO 2.0 solution.

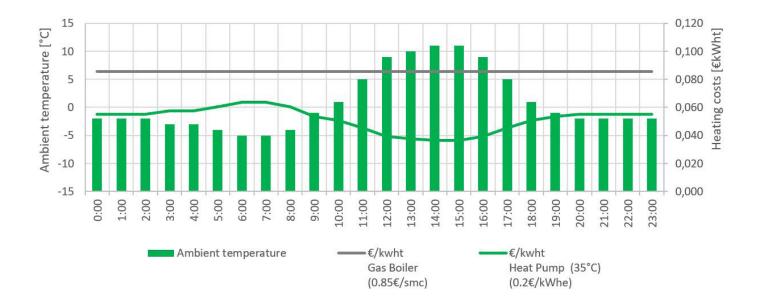
Natural gas

Electricity

The graphs show the consumption and cost of natural gas and electricity for 2019 and 2020 (heat pump installed at the end of December 2019).


Year	Natural gas cost	Electricity cost	Total cost	Savi	ngs
2019	1092 €	620 €	1712 €	200.6	200/
2020	330 €	1093 €	1423 €	— 289 €	-20%

The savings were obtained without changings any aspect of the previous system except for the heat generator. The heating terminals are radiators with an operating temperature of 55°C. The use of low temperature terminals (underfloor heating) would allow for double the amount of savings.


EuroSwitch Function

SPHERA EVO 2.0 provides a useful instrument for maximising savings, for hybrid systems with a gas boiler, through the EuroSwitch function. Based on the set price of natural gas and electricity, the heat pump will assign priority to its own operation rather than that of the boiler depending on its efficiency. The aim is to always use the most cost-effective heat source.

Case 1 - Typical day in January - Radiators (supply temperature = 55°C)

From 03:00am to 08:00am, heat will be produced by the boiler, while during other time slots, it will be produced by the heat pump.

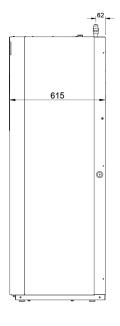
Case 2 - Typical day in January - Radiant floor (supply temperature = 35°C)

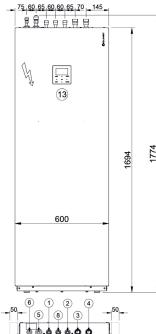
Heat will be produced by the heat pump during the whole day.

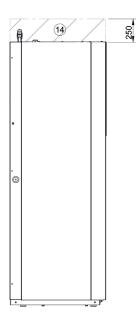
The graphs show the trend of the daily temperature and of the cost for thermal energy. The heat pump's efficiency varies according to the outdoor temperature and the water temperature, while the boiler has a fixed efficiency. The calculations consider an average cost of natural gas equal to 0.85 €/SCM and of electricity equal to 0.2 €/SCM.

Management of units in cascade

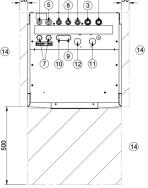
Many applications require units to be installed as back-up for the main system or have loads that can change significantly during annual operation. Cascade operation allows connection of up to 6 units in parallel, running a Master unit and activating the Slave units when its own capacity is not sufficient to meet the load of the system, ensuring maximum reliability and efficiency of the system.

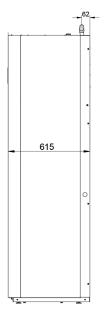

The system rotates operation of all of the units by counting the compressor's operating hours, so as to use them evenly. In the event of failure of a unit, including the Master, the system ensures continuity of service.

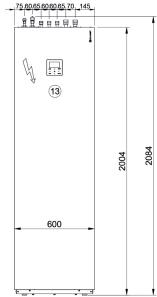

Cascade management is provided as standard by the logic of the units; it must be set with the dip-switches (Master or Slave unit) on the board and all Slave units must be connected with a serial to the HMI of the Master. The slave units are automatically addressed by the Master at start-up.

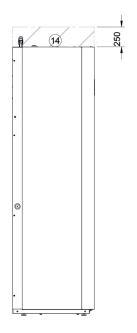

Dimensional drawings

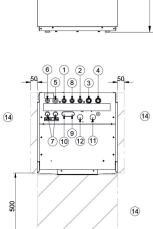
SPHERA EVO 2.0 - SQKN-YEE 1 TC A TOWER 190 L

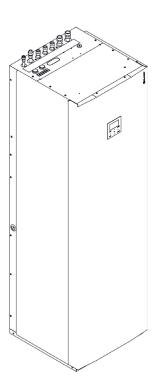

DAAGL0001 REV00 DATA/DATE 07/06/2021


- Domestic hot water outlet M 3/4"
- Mains inlet M 3/4"
- Return for the utility installation M 1"
- Supply to the utility installation M 1"
- Return connection 5/8" SAE (*)
- Liquid connection 3/8" SAE (*)
- Electrical line inlet
- DHW recirculation circuit M 3/4"
- Solar system outlet M 3/4" (optional accessory)
- Solar system inlet M 3/4" (optional accessory)
- Gas boiler outlet M 1" (optional accessory) 11.
- 12. Gas boile inlet M 1" (optional accessory)
- Control keypad
- Functional spaces for standard unit

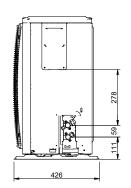

(*) see instructions in kit RGGL00009

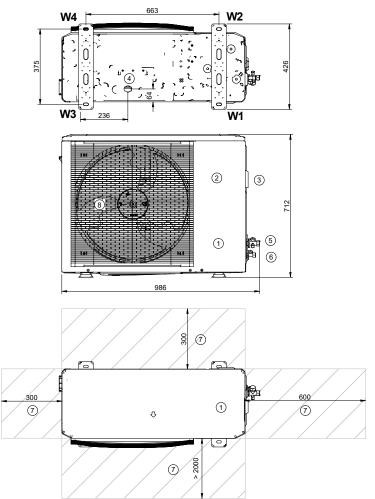

SIZE	190 L		
Operation weight	kg	359	
Shipping weight	kg	187	


SPHERA EVO 2.0 - SQNK-YEE 1 TC A-B TOWER 250 L


DAAGL0002 REV00 DATA/DATE 07/06/2021

- 1. Domestic hot water outlet M 3/4"
- 2. Mains inlet M 3/4"
- 3. Return for the utility installation M 1"
- 4. Supply to the utility installation M 1"
- 5. Return connection 5/8" SAE (*)
- 6. Liquid connection 3/8" SAE (*)
- 7. Electrical line inlet
- 8. DHW recirculation circuit M 3/4"
- 9. Solar system outlet M 3/4" (optional accessory)
- 10. Solar system inlet M 3/4" (optional accessory)
- 11. Gas boiler outlet M 1" (optional accessory)
- 12. Gas boile inlet M 1" (optional accessory)
- 13. Control keypad
- 14. Functional spaces for standard unit

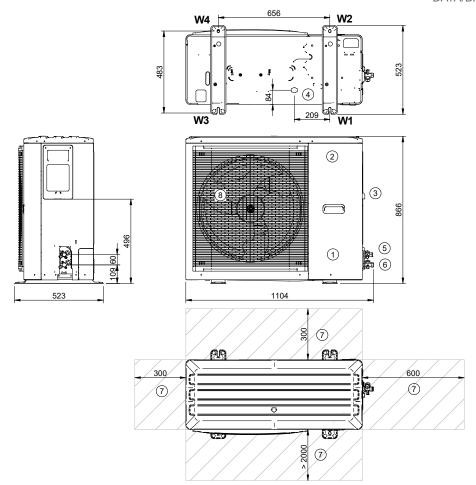

(*) see instructions in kit RGGL00001


RANGE		GABC	GBBC
SIZE		250 L	250 L
Operation weight	kg	419	421
Shipping weight	kg	192	194

Dimensional drawings

SPHERA EVO 2.0 (outdoor unit) - 2.1 - 3.1

DAAQ80002_REV03 DATA/DATE 05/06/2023

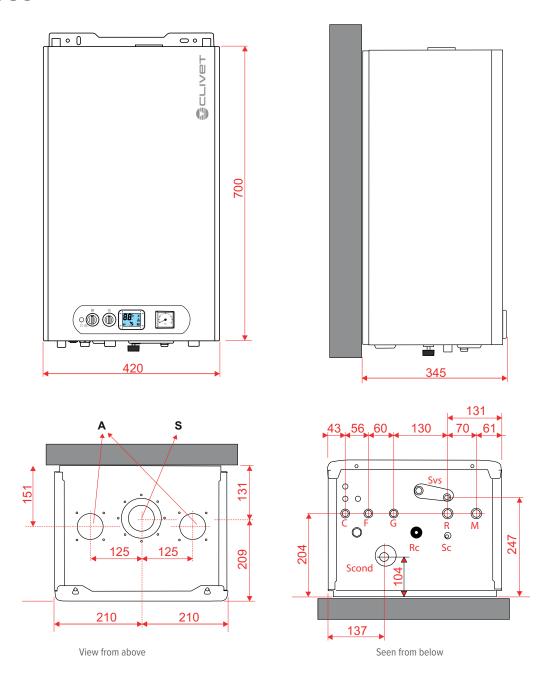


- Compressor enclosure Electrical panel
- Power input
- Condensate drain
- Gas connections (1/4")
- Gas connections (5/8") Functional spaces
- Electrical fan

SIZE		2.1	3.1
W1 Supporting Point	kg	23,9	23,9
W2 Supporting Point	kg	13,8	13,8
W3 Supporting Point	kg	12,9	12,9
W4 Supporting Point	kg	7,4	7,4
Operation weight	kg	58	58
Shipping weight	kg	64	64

SPHERA EVO 2.0 (outdoor unit) - 4.1 - 8.1

DAAQ80001_REV03 DATA/DATE 05/06/2023



- Compressor enclosure Electrical panel
- Power input
- Condensate drain Gas connections (3/8")
- Gas connections (5/8")
- Functional spaces
- Electrical fan

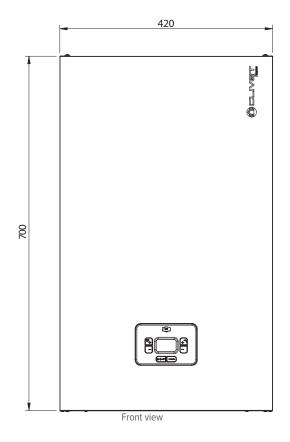
SIZE		4.1 / 1Ph	5.1 / 1Ph	6.1 / 1Ph	6.1 / 3Ph	7.1 / 1Ph	7.1 / 3Ph	8.1 / 1Ph	8.1 / 3Ph
W1 Supporting Point		30	30	30,4	40,3	30,4	40,3	30,4	40,3
W2 Supporting Point		17,8	17,8	29,1	34,8	29,1	34,8	29,1	34,8
W3 Supporting Point		18,4	18,4	18,6	19,8	18,6	19,8	18,6	19,8
W4 Supporting Point		10,9	10,9	17,9	17,1	17,9	17,1	17,9	17,1
Operation weight	kg	77	77	96	112	96	112	96	112
Shipping weight	kg	88	88	110	125	110	125	110	125

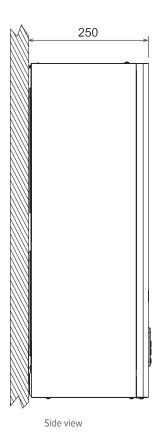
Dimensional drawings

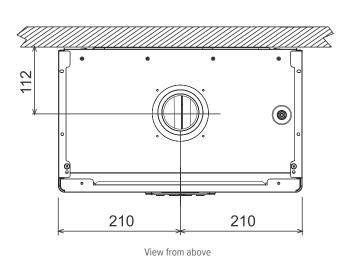
GAS BOILER UC

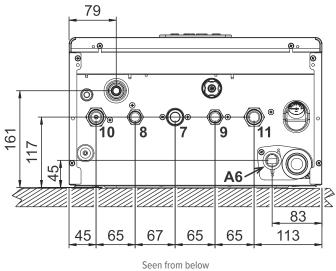
M = System supply Ø 3/4" R = System return Ø 3/4"

G = Gas Ø 3/4"


F = Cold DHW inlet Ø 1/2"

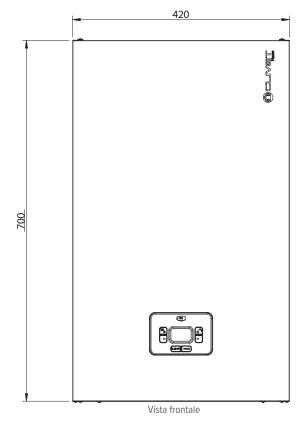

C = Hot DHW outlet Ø 1/2"

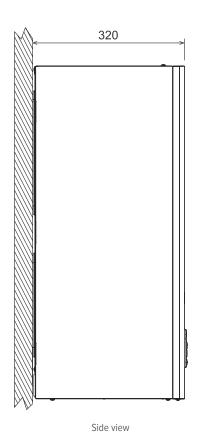

SC = Condensate drain (Ø 18,1) A = Air intake Ø 80

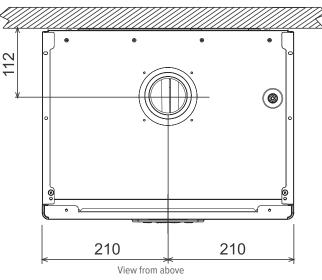

S = Smoke exhaust Ø 80

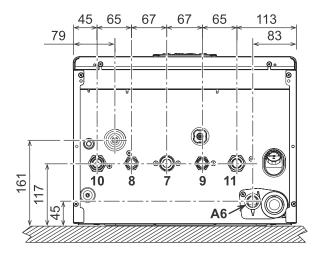
GAS BOILER FE 24.4

10 = System supply Ø 3/4" 11 = System return Ø 3/4"


7 = Gas Ø 3/4"


9 = Cold DHW inlet Ø 1/2" 8 = Hot DHW outlet Ø 1/2" A6 = Condensate drain (Ø 22,5)


Air intake and Smoke exhaust Ø 80


Dimensional drawings

GAS BOILER FE 33.4

Seen from below

- 10 = System supply Ø 3/4" 11 = System return Ø 3/4" 7 = Gas Ø 3/4"

- 9 = Cold DHW inlet Ø 1/2" 8 = Hot DHW outlet Ø 1/2"
- A6 = Condensate drain (Ø 22,5)
- Air intake and Smoke exhaust Ø 80

FOR OVER 30 YEARS WE HAVE BEEN OFFERING SOLUTIONS TO ENSURE SUSTAINABLE COMFORT AND THE WELLBEING OF PEOPLE AND THE ENVIRONMENT

www.clivet.com

MideaGroup
humanizing technology

CLIVET S.p.A.

Via Camp Lonc 25, Z.I. Villapaiera 32032 - Feltre (BL) - Italy Tel. +39 0439 3131 - info@clivet.it

CLIVET GMBH

Hummelsbütteler Steindamm 84, 22851 Norderstedt, Germany Tel. +49 40 325957-0 - info.de@clivet.com

Clivet Group UK LTD

Units F5 & F6 Railway Triangle, Portsmouth, Hampshire PO6 1TG Tel. +44 02392 381235 -Enquiries@Clivetgroup.co.uk

CLIVET LLC

Office 508-511, Elektozavodskaya st. 24, Moscow, Russian Federation, 107023 Tel. +7495 6462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO) Headquarter Building, Office EG-05, P.O Box-342009, Dubai, UAE Tel. +9714 3208499 - info@clivet.ae

Clivet South East Europe

Jaruščica 9b 10000, Zagreb, Croatia Tel. +3851 222 8784 - info.see@clivet.com

CLIVET France

10, rue du Fort de Saint Cyr - 78180 Montigny le Bretonneux, France info.fr@clivet.com

Clivet Airconditioning Systems Pvt Ltd

Office No.501 & 502,5th Floor, Commercial –I, Kohinoor City, Old Premier Compound, Off LBS Marg, Kirol Road, Kurla West, Mumbai Maharashtra 400070, India

Tel. +91 22 30930200 - sales.india@clivet.com